plot_differences {tidysynth} | R Documentation |
plot_difference
Description
Plot the difference between the observed and synthetic control unit. The difference captures the causal quantity (i.e. the magnitude of the difference between the observed and counter-factual case).
Usage
plot_differences(data, time_window = NULL)
Arguments
data |
nested data of type |
time_window |
time window of the trend plot. |
Value
ggplot
object of the difference between the observed and synthetic
trends.
ggplot
object of difference between the observed and synthetic control unit.
Examples
# Smoking example data
data(smoking)
smoking_out <-
smoking %>%
# initial the synthetic control object
synthetic_control(outcome = cigsale,
unit = state,
time = year,
i_unit = "California",
i_time = 1988,
generate_placebos=TRUE) %>%
# Generate the aggregate predictors used to generate the weights
generate_predictor(time_window=1980:1988,
lnincome = mean(lnincome, na.rm = TRUE),
retprice = mean(retprice, na.rm = TRUE),
age15to24 = mean(age15to24, na.rm = TRUE)) %>%
generate_predictor(time_window=1984:1988,
beer = mean(beer, na.rm = TRUE)) %>%
generate_predictor(time_window=1975,
cigsale_1975 = cigsale) %>%
generate_predictor(time_window=1980,
cigsale_1980 = cigsale) %>%
generate_predictor(time_window=1988,
cigsale_1988 = cigsale) %>%
# Generate the fitted weights for the synthetic control
generate_weights(optimization_window =1970:1988,
Margin.ipop=.02,Sigf.ipop=7,Bound.ipop=6) %>%
# Generate the synthetic control
generate_control()
# Plot the observed and synthetic trend
smoking_out %>% plot_differences(time_window = 1970:2000)
[Package tidysynth version 0.2.0 Index]