grab_predictors {tidysynth} | R Documentation |
grab_predictors
Description
Extract the aggregate-level covariates generated by generate_predictor()
from
the synth pipeline.
Usage
grab_predictors(data, type = "treated", placebo = FALSE)
Arguments
data |
nested data of type |
type |
string specifying which version of the data to extract: "treated" or "control". Default is "treated". |
placebo |
boolean flag; if TRUE placebo values are returned as well (if available). Default is FALSE. |
Value
tibble data frame
Examples
# Smoking example data
data(smoking)
smoking_out <-
smoking %>%
# initial the synthetic control object
synthetic_control(outcome = cigsale,
unit = state,
time = year,
i_unit = "California",
i_time = 1988,
generate_placebos=FALSE) %>%
# Generate the aggregate predictors used to generate the weights
generate_predictor(time_window=1980:1988,
lnincome = mean(lnincome, na.rm = TRUE),
retprice = mean(retprice, na.rm = TRUE),
age15to24 = mean(age15to24, na.rm = TRUE)) %>%
generate_predictor(time_window=1984:1988,
beer = mean(beer, na.rm = TRUE)) %>%
generate_predictor(time_window=1975,
cigsale_1975 = cigsale) %>%
generate_predictor(time_window=1980,
cigsale_1980 = cigsale) %>%
generate_predictor(time_window=1988,
cigsale_1988 = cigsale) %>%
# Generate the fitted weights for the synthetic control
generate_weights(optimization_window =1970:1988,
Margin.ipop=.02,Sigf.ipop=7,Bound.ipop=6) %>%
# Generate the synthetic control
generate_control()
# Grab predictors data frame for the treated unit
smoking_out %>% grab_predictors()
# Grab predictors data frame for control units
smoking_out %>% grab_predictors(type="controls")
[Package tidysynth version 0.2.0 Index]