excel_stat_mutation_functions {tidyquant} | R Documentation |
Excel Statistical Mutation Functions
Description
15+ common statistical functions familiar to users of Excel (e.g. ABS()
, SQRT()
)
that modify / transform a series of values
(i.e. a vector of the same length of the input is returned).
These functions are designed to help users coming from an Excel background. Most functions replicate the behavior of Excel:
Names in most cases match Excel function names
Functionality replicates Excel
By default, missing values are ignored (same as in Excel)
Usage
ABS(x)
SQRT(x)
LOG(x)
EXP(x)
RETURN(x, n = 1, fill_na = NA)
PCT_CHANGE(x, n = 1, fill_na = NA)
CHANGE(x, n = 1, fill_na = NA)
LAG(x, n = 1, fill_na = NA)
LEAD(x, n = 1, fill_na = NA)
CUMULATIVE_SUM(x)
CUMULATIVE_PRODUCT(x)
CUMULATIVE_MAX(x)
CUMULATIVE_MIN(x)
CUMULATIVE_MEAN(x)
CUMULATIVE_MEDIAN(x)
Arguments
x |
A vector. Most functions are designed for numeric data. |
n |
Values to offset. Used in functions like |
fill_na |
Fill missing ( |
Value
-
Mutation functions return a mutated / transformed version of the vector
Useful functions
Mutation Functions - Transforms a vector
Lags & Change (Offsetting Functions):
CHANGE()
,PCT_CHANGE()
,LAG()
,LEAD()
Cumulative Totals:
CUMULATIVE_SUM()
,CUMULATIVE_PRODUCT()
Examples
# Libraries
library(tidyquant)
library(timetk)
library(tidyverse)
library(forcats)
# --- Basic Usage ----
CUMULATIVE_SUM(1:10)
PCT_CHANGE(c(21, 24, 22, 25), fill_na = 0)
# --- Usage with tidyverse ---
# Go from daily to monthly periodicity,
# then calculate returns and growth of $1 USD
FANG %>%
mutate(symbol = as_factor(symbol)) %>%
group_by(symbol) %>%
# Summarization - Collapse from daily to FIRST value by month
summarise_by_time(
.date_var = date,
.by = "month",
adjusted = FIRST(adjusted)
) %>%
# Mutation - Calculate monthly returns and cumulative growth of $1 USD
group_by(symbol) %>%
mutate(
returns = PCT_CHANGE(adjusted, fill_na = 0),
growth = CUMULATIVE_SUM(returns) + 1
)