edge_types {tidygraph} | R Documentation |
Querying edge types
Description
These functions lets the user query whether the edges in a graph is of a specific type. All functions return a logical vector giving whether each edge in the graph corresponds to the specific type.
Usage
edge_is_multiple()
edge_is_loop()
edge_is_mutual()
edge_is_from(from)
edge_is_to(to)
edge_is_between(from, to, ignore_dir = !graph_is_directed())
edge_is_incident(nodes)
edge_is_bridge()
edge_is_feedback_arc(weights = NULL, approximate = TRUE)
Arguments
from , to , nodes |
A vector giving node indices |
ignore_dir |
Is both directions of the edge allowed |
weights |
The weight of the edges to use for the calculation. Will be evaluated in the context of the edge data. |
approximate |
Should the minimal set be approximated or exact |
Value
A logical vector of the same length as the number of edges in the graph
Functions
-
edge_is_multiple()
: Query whether each edge has any parallel siblings -
edge_is_loop()
: Query whether each edge is a loop -
edge_is_mutual()
: Query whether each edge has a sibling going in the reverse direction -
edge_is_from()
: Query whether an edge goes from a set of nodes -
edge_is_to()
: Query whether an edge goes to a set of nodes -
edge_is_between()
: Query whether an edge goes between two sets of nodes -
edge_is_incident()
: Query whether an edge goes from or to a set of nodes -
edge_is_bridge()
: Query whether an edge is a bridge (ie. it's removal will increase the number of components in a graph) -
edge_is_feedback_arc()
: Query whether an edge is part of the minimal feedback arc set (its removal together with the rest will break all cycles in the graph)
Examples
create_star(10, directed = TRUE, mutual = TRUE) %>%
activate(edges) %>%
sample_frac(0.7) %>%
mutate(single_edge = !edge_is_mutual())