.fit.tvp {tidyfit}R Documentation

Bayesian Time-Varying Regression for tidyfit

Description

Fits a Bayesian time-varying regression on a 'tidyFit' R6 class. The function can be used with regress.

Usage

## S3 method for class 'tvp'
.fit(self, data = NULL)

Arguments

self

a 'tidyFit' R6 class.

data

a data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g. from dbplyr or dtplyr).

Details

Hyperparameters:

None. Cross validation not applicable.

Important method arguments (passed to m)

The function provides a wrapper for shrinkTVP::shrinkTVP. See ?shrinkTVP for more details.

Implementation

An argument index_col can be passed, which allows a custom index to be added to coef(m("tvp")) (e.g. a date index, see Examples).

Value

A fitted 'tidyFit' class model.

Author(s)

Johann Pfitzinger

References

Peter Knaus, Angela Bitto-Nemling, Annalisa Cadonna and Sylvia Frühwirth-Schnatter (2021). Shrinkage in the Time-Varying Parameter Model Framework Using the R Package shrinkTVP. Journal of Statistical Software 100(13), 1–32. doi:10.18637/jss.v100.i13.

See Also

.fit.bayes, .fit.mslm and m methods

Examples

# Load data
data <- tidyfit::Factor_Industry_Returns
data <- dplyr::filter(data, Industry == "HiTec")
data <- dplyr::select(data, -Industry)

# Within 'regress' function (using low niter for illustration)
fit <- regress(data, Return ~ ., m("tvp", niter = 50, index_col = "Date"))
tidyr::unnest(coef(fit), model_info)


[Package tidyfit version 0.7.1 Index]