.fit.subset {tidyfit} | R Documentation |
Best subset regression and classification for tidyfit
Description
Fits a best subset regression or classification on a 'tidyFit' R6
class. The function can be used with regress
and classify
.
Usage
## S3 method for class 'subset'
.fit(self, data = NULL)
Arguments
self |
a 'tidyFit' R6 class. |
data |
a data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g. from dbplyr or dtplyr). |
Details
Hyperparameters:
None. Cross validation not applicable.
Important method arguments (passed to m
)
-
method
(e.g. 'forward', 'backward') -
IC
(information criterion, e.g. 'AIC')
The best subset regression is estimated using bestglm::bestglm
which is a wrapper around leaps::regsubsets
for the regression case, and performs an exhaustive search for the classification case. See ?bestglm
for more details.
Implementation
Forward or backward selection can be performed by passing method = "forward"
or method = "backward"
to m
.
Value
A fitted 'tidyFit' class model.
Author(s)
Johann Pfitzinger
References
A.I. McLeod, Changjiang Xu and Yuanhao Lai (2020).
bestglm: Best Subset GLM and Regression Utilities.
R package version 0.37.3. URL https://CRAN.R-project.org/package=bestglm.
See Also
Examples
# Load data
data <- tidyfit::Factor_Industry_Returns
# Stand-alone function
fit <- m("subset", Return ~ ., data, method = c("forward", "backward"))
tidyr::unnest(fit, settings)
# Within 'regress' function
fit <- regress(data, Return ~ ., m("subset", method = "forward"),
.mask = c("Date", "Industry"))
coef(fit)