.fit.nnet {tidyfit} | R Documentation |
Neural Network regression for tidyfit
Description
Fits a single-hidden-layer neural network regression on a 'tidyFit' R6
class.
The function can be used with regress
and classify
.
Usage
## S3 method for class 'nnet'
.fit(self, data = NULL)
Arguments
self |
a 'tidyFit' R6 class. |
data |
a data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g. from dbplyr or dtplyr). |
Details
Hyperparameters:
-
size
(number of units in the hidden layer) -
decay
(parameter for weight decay) -
maxit
(maximum number of iterations)
Important method arguments (passed to m
)
The function provides a wrapper for nnet::nnet.formula
. See ?nnet
for more details.
Implementation
For regress
, linear output units (linout=True
) are used, while classify
implements
the default logic of nnet
(entropy=TRUE
for 2 target classes and softmax=TRUE
for more classes).
Value
A fitted 'tidyFit' class model.
Author(s)
Phil Holzmeister
Examples
# Load data
data <- tidyfit::Factor_Industry_Returns
# Stand-alone function
fit <- m("nnet", Return ~ ., data)
fit
# Within 'regress' function
fit <- regress(data, Return ~ ., m("nnet", decay=0.5, size = 8),
.mask = c("Date", "Industry"))
# Within 'classify' function
fit <- classify(iris, Species ~ ., m("nnet", decay=0.5, size = 8))