.fit.lasso {tidyfit} | R Documentation |
Lasso regression and classification for tidyfit
Description
Fits a linear regression or classification with L1 penalty on a 'tidyFit' R6
class. The function can be used with regress
and classify
.
Usage
## S3 method for class 'lasso'
.fit(self, data = NULL)
Arguments
self |
a 'tidyFit' R6 class. |
data |
a data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g. from dbplyr or dtplyr). |
Details
Hyperparameters:
-
lambda
(L1 penalty)
Important method arguments (passed to m
)
The Lasso regression is estimated using glmnet::glmnet
with alpha = 1
. See ?glmnet
for more details. For classification pass family = "binomial"
to ...
in m
or use classify
.
Implementation
If the response variable contains more than 2 classes, a multinomial response is used automatically.
Features are standardized by default with coefficients transformed to the original scale.
If no hyperparameter grid is passed (is.null(control$lambda)
), dials::grid_regular()
is used to determine a sensible default grid. The grid size is 100. Note that the grid selection tools provided by glmnet::glmnet
cannot be used (e.g. dfmax
). This is to guarantee identical grids across groups in the tibble.
Value
A fitted 'tidyFit' class model.
Author(s)
Johann Pfitzinger
References
Jerome Friedman, Trevor Hastie, Robert Tibshirani (2010). Regularization Paths for Generalized Linear Models via Coordinate Descent. Journal of Statistical Software, 33(1), 1-22. URL https://www.jstatsoft.org/v33/i01/.
See Also
.fit.enet
, .fit.ridge
, .fit.adalasso
and m
methods
Examples
# Load data
data <- tidyfit::Factor_Industry_Returns
# Stand-alone function
fit <- m("lasso", Return ~ ., data, lambda = 0.5)
fit
# Within 'regress' function
fit <- regress(data, Return ~ ., m("lasso", lambda = c(0.1, 0.5)),
.mask = c("Date", "Industry"))
coef(fit)