| .fit.enet {tidyfit} | R Documentation |
ElasticNet regression or classification for tidyfit
Description
Fits an ElasticNet regression or classification on a 'tidyFit' R6 class. The function can be used with regress and classify.
Usage
## S3 method for class 'enet'
.fit(self, data = NULL)
Arguments
self |
a 'tidyFit' R6 class. |
data |
a data frame, data frame extension (e.g. a tibble), or a lazy data frame (e.g. from dbplyr or dtplyr). |
Details
Hyperparameters:
-
lambda(penalty) -
alpha(L1-L2 mixing parameter)
Important method arguments (passed to m)
The ElasticNet regression is estimated using glmnet::glmnet. See ?glmnet for more details. For classification pass family = "binomial" to ... in m or use classify.
Implementation
If the response variable contains more than 2 classes, a multinomial response is used automatically.
An intercept is always included and features are standardized with coefficients transformed to the original scale.
If no hyperparameter grid is passed (is.null(control$lambda) and is.null(control$alpha)), dials::grid_regular() is used to determine a sensible default grid. The grid size is 100 for lambda and 5 for alpha. Note that the grid selection tools provided by glmnet::glmnet cannot be used (e.g. dfmax). This is to guarantee identical grids across groups in the tibble.
Value
A fitted 'tidyFit' class model.
Author(s)
Johann Pfitzinger
References
Jerome Friedman, Trevor Hastie, Robert Tibshirani (2010). Regularization Paths for Generalized Linear Models via Coordinate Descent. Journal of Statistical Software, 33(1), 1-22. URL https://www.jstatsoft.org/v33/i01/.
See Also
.fit.lasso, .fit.adalasso, .fit.ridge and m methods
Examples
# Load data
data <- tidyfit::Factor_Industry_Returns
# Stand-alone function
fit <- m("enet", Return ~ ., data, lambda = c(0, 0.1), alpha = 0.5)
fit
# Within 'regress' function
fit <- regress(data, Return ~ ., m("enet", alpha = c(0, 0.5), lambda = c(0.1)),
.mask = c("Date", "Industry"), .cv = "vfold_cv")
coef(fit)