tidydelta {tidydelta} | R Documentation |
Delta Method implementation
Description
Estimates standard errors for transformations of random variables using Delta method.
Usage
tidydelta(
formula,
normality_eval = TRUE,
formula_vars = mean,
mean_dta = NULL,
cov_dta = NULL,
n = NULL,
conf_lev = 0.95
)
Arguments
formula |
A formula object specifying the variables of interest. |
normality_eval |
Logical value to run normality test in case of being possible. |
formula_vars |
The function(s) to apply to the variables in the formula. |
mean_dta |
Vector containing the means of the variables. |
cov_dta |
Covariance matrix of the variables. |
n |
Sample size evaluation (in case that we can evaluate the confidence intervals with different hypnotic sample sizes). |
conf_lev |
Confidence level for confidence intervals. |
Value
A tibble with columns for means, standard errors, and optionally, confidence intervals.
Examples
# Equivalent ways to use tidydelta()
library(tidyverse)
x <- rnorm(1000, mean = 5, sd = 2)
y <- rnorm(1000, mean = 15, sd = 3)
bd <- tibble(x, y)
tidydelta(~ y / x,
conf_lev = .95
)
tidydelta(~ bd$y / bd$x,
conf_lev = .95
)
bd %>%
summarise(tidydelta(~ y / x,
conf_lev = .95
))
[Package tidydelta version 0.1.0 Index]