describe {tidycomm} | R Documentation |
Describe numeric variables
Description
Describe numeric variables by several measures of central tendency and variability. If no variables are specified, all numeric (integer or double) variables are described.
Usage
describe(data, ..., na.rm = TRUE)
Arguments
data |
|
... |
Variables to describe (column names). Leave empty to describe all numeric variables in data. |
na.rm |
a logical value indicating whether |
Details
N: number of valid cases (i.e., all but missing)
Missing: number of NA cases
M: mean average
SD: standard deviation, sd
Min: minimum value, min
Q25: 25% quantile, quantile
Mdn: median average, same as 50% quantile
Q75: 75% quantile, quantile
Max: maximum value, max
Range: difference between Min and Max
CI_95_LL:
M - Q(0.975) \times \frac{SD}{\sqrt{N}}
whereQ(0.975)
denotes Student t's stats::quantile function with a probability of0.975
andN-1
degrees of freedomCI_95_UL:
M + Q(0.975) \times \frac{SD}{\sqrt{N}}
whereQ(0.975)
denotes Student t's stats::quantile function with a probability of0.975
andN-1
degrees of freedomSkewness: traditional Fisher-Pearson coefficient of skewness of valid cases as per
\frac{\frac{1}{N} \sum\limits_{i=1}^N (x_{i}-\overline{x})^3}{[\frac{1}{N}\sum\limits_{i=1}^N (x_{i}-\overline{x})^2]^{3/2}}
where\overline{x}
denotesM
, following Doane & Seward (2011, p. 6, 1a). See DOI doi:10.1080/10691898.2011.11889611.Kurtosis: empirical sample kurtosis (i.e., standardized fourth population moment about the mean) as per
\frac{\sum (x-\overline{x})^4 / N}{(\sum (x-\overline{x})^2 / N)^2}
, following DeCarlo (1997, p. 292, b2). See DOI doi:10.1037/1082-989X.2.3.292.
Value
a tdcmm model
See Also
Other descriptives:
describe_cat()
,
tab_percentiles()
Examples
WoJ %>% describe(autonomy_selection, autonomy_emphasis, work_experience)
fbposts %>% describe(n_pictures)