reconcile_clusterings_mapping {tidyclust} | R Documentation |
Relabels clusters to match another cluster assignment
Description
When forcing one-to-one, the user needs to decide what to prioritize:
"accuracy": optimize raw count of all observations with the same label across the two assignments
"precision": optimize the average percent of each alt cluster that matches the corresponding primary cluster
Usage
reconcile_clusterings_mapping(
primary,
alternative,
one_to_one = TRUE,
optimize = "accuracy"
)
Arguments
primary |
A vector containing cluster labels, to be matched |
alternative |
Another vector containing cluster labels, to be changed |
one_to_one |
Boolean; should each alt cluster match only one primary cluster? |
optimize |
One of "accuracy" or "precision"; see description. |
Details
Retains the cluster labels of the primary assignment, and relabel the alternate assignment to match as closely as possible. The user must decide whether clusters are forced to be "one-to-one"; that is, are we allowed to assign multiple labels from the alternate assignment to the same primary label?
Value
A tibble with 3 columns; primary
, alt
, alt_recoded
Examples
factor1 <- c("Apple", "Apple", "Carrot", "Carrot", "Banana", "Banana")
factor2 <- c("Dog", "Dog", "Cat", "Dog", "Fish", "Fish")
reconcile_clusterings_mapping(factor1, factor2)
factor1 <- c("Apple", "Apple", "Carrot", "Carrot", "Banana", "Banana")
factor2 <- c("Dog", "Dog", "Cat", "Dog", "Fish", "Parrot")
reconcile_clusterings_mapping(factor1, factor2, one_to_one = FALSE)