fast_regression {tidyAML} | R Documentation |
Generate Model Specification calls to parsnip
Description
Creates a list/tibble of parsnip model specifications.
Usage
fast_regression(
.data,
.rec_obj,
.parsnip_fns = "all",
.parsnip_eng = "all",
.split_type = "initial_split",
.split_args = NULL,
.drop_na = TRUE
)
Arguments
.data |
The data being passed to the function for the regression problem |
.rec_obj |
The recipe object being passed. |
.parsnip_fns |
The default is 'all' which will create all possible regression model specifications supported. |
.parsnip_eng |
the default is 'all' which will create all possible regression model specifications supported. |
.split_type |
The default is 'initial_split', you can pass any type of
split supported by |
.split_args |
The default is NULL, when NULL then the default parameters of the split type will be executed for the rsample split type. |
.drop_na |
The default is TRUE, which will drop all NA's from the data. |
Details
With this function you can generate a tibble output of any regression
model specification and it's fitted workflow
object.
Value
A list or a tibble.
Author(s)
Steven P. Sanderson II, MPH
See Also
Other Model_Generator:
create_model_spec()
,
fast_classification()
Examples
library(recipes, quietly = TRUE)
rec_obj <- recipe(mpg ~ ., data = mtcars)
frt_tbl <- fast_regression(
mtcars,
rec_obj,
.parsnip_eng = c("lm","glm","gee"),
.parsnip_fns = "linear_reg"
)
frt_tbl