| fast_classification {tidyAML} | R Documentation | 
Generate Model Specification calls to parsnip
Description
Creates a list/tibble of parsnip model specifications.
Usage
fast_classification(
  .data,
  .rec_obj,
  .parsnip_fns = "all",
  .parsnip_eng = "all",
  .split_type = "initial_split",
  .split_args = NULL,
  .drop_na = TRUE
)
Arguments
.data | 
 The data being passed to the function for the classification problem  | 
.rec_obj | 
 The recipe object being passed.  | 
.parsnip_fns | 
 The default is 'all' which will create all possible classification model specifications supported.  | 
.parsnip_eng | 
 the default is 'all' which will create all possible classification model specifications supported.  | 
.split_type | 
 The default is 'initial_split', you can pass any type of
split supported by   | 
.split_args | 
 The default is NULL, when NULL then the default parameters of the split type will be executed for the rsample split type.  | 
.drop_na | 
 The default is TRUE, which will drop all NA's from the data.  | 
Details
With this function you can generate a tibble output of any classification
model specification and it's fitted workflow object. Per recipes documentation
explicitly with step_string2factor() it is encouraged to mutate your predictor
into a factor before you create your recipe.
Value
A list or a tibble.
Author(s)
Steven P. Sanderson II, MPH
See Also
Other Model_Generator: 
create_model_spec(),
fast_regression()
Examples
library(recipes)
library(dplyr)
library(tidyr)
df <- Titanic |>
 as_tibble() |>
 uncount(n) |>
 mutate(across(everything(), as.factor))
rec_obj <- recipe(Survived ~ ., data = df)
fct_tbl <- fast_classification(
  .data = df,
  .rec_obj = rec_obj,
  .parsnip_eng = c("glm","earth")
  )
fct_tbl