fast_classification {tidyAML} | R Documentation |
Generate Model Specification calls to parsnip
Description
Creates a list/tibble of parsnip model specifications.
Usage
fast_classification(
.data,
.rec_obj,
.parsnip_fns = "all",
.parsnip_eng = "all",
.split_type = "initial_split",
.split_args = NULL,
.drop_na = TRUE
)
Arguments
.data |
The data being passed to the function for the classification problem |
.rec_obj |
The recipe object being passed. |
.parsnip_fns |
The default is 'all' which will create all possible classification model specifications supported. |
.parsnip_eng |
the default is 'all' which will create all possible classification model specifications supported. |
.split_type |
The default is 'initial_split', you can pass any type of
split supported by |
.split_args |
The default is NULL, when NULL then the default parameters of the split type will be executed for the rsample split type. |
.drop_na |
The default is TRUE, which will drop all NA's from the data. |
Details
With this function you can generate a tibble output of any classification
model specification and it's fitted workflow
object. Per recipes documentation
explicitly with step_string2factor()
it is encouraged to mutate your predictor
into a factor before you create your recipe.
Value
A list or a tibble.
Author(s)
Steven P. Sanderson II, MPH
See Also
Other Model_Generator:
create_model_spec()
,
fast_regression()
Examples
library(recipes)
library(dplyr)
library(tidyr)
df <- Titanic |>
as_tibble() |>
uncount(n) |>
mutate(across(everything(), as.factor))
rec_obj <- recipe(Survived ~ ., data = df)
fct_tbl <- fast_classification(
.data = df,
.rec_obj = rec_obj,
.parsnip_eng = c("glm","earth")
)
fct_tbl