tgs_matrix_tapply {tgstat} | R Documentation |
For each matrix row apply a function over a ragged array
Description
For each matrix row apply a function to each cell of a ragged array, that is to each (non-empty) group of values given by a unique combination of the levels of certain factors.
Usage
tgs_matrix_tapply(x, index, fun, ...)
Arguments
x |
a matrix or a sparse matrix of 'dgCMatrix' type |
index |
a 'list' of one or more 'factor's, each of same length as the number of columns in 'x'. The elements are coerced to factors by 'as.factor'. |
fun |
the function to be applied |
... |
optional arguments to 'fun' |
Details
'tgs_matrix_tapply(x, index, fun)' is essentialy an efficient implementation of 'apply(mat, 1, function(x) tapply(x, index, fun))'.
Value
A matrix of length(index) X nrow(x) size. Each [i,j]
element
represents the result of applying 'fun' to
x[i,which(index==levels(index)[j])]
.
Note that the return value is a dense matrix even when x
is sparse.
Examples
# Note: all the available CPU cores might be used
set.seed(seed = 1)
nr <- 6
nc <- 10
mat <- matrix(sample(c(rep(0, 6), 1:3), nr * nc, replace = TRUE), nrow = nr, ncol = nc)
index <- factor(rep_len(1:3, ncol(mat)), levels = 0:5)
r1 <- apply(mat, 1, function(x) tapply(x, index, sum))
r2 <- tgs_matrix_tapply(mat, index, sum)