exp2d.Z {tgp} | R Documentation |
Random Z-values for 2-d Exponential Data
Description
Evaluate the functional (mean) response for the 2-d
exponential data (truth) at the X
inputs, and randomly
sample noisy Z
–values having normal error with standard
deviation provided.
Usage
exp2d.Z(X, sd=0.001)
Arguments
X |
Must be a |
sd |
Standard deviation of iid normal noise added to the responses |
Details
The response is evaluated as
Z(X)=x_1 * \exp(x_1^2-x_2^2).
thus creating the outputs Z
and Ztrue
.
Zero-mean normal noise with sd=0.001
is added to the
responses Z
and ZZ
Value
Output is a data.frame
with columns:
Z |
Numeric vector describing the responses (with noise) at the
|
Ztrue |
Numeric vector describing the true responses (without
noise) at the |
Author(s)
Robert B. Gramacy, rbg@vt.edu, and Matt Taddy, mataddy@amazon.com
References
Gramacy, R. B. (2020) Surrogates: Gaussian Process Modeling, Design and Optimization for the Applied Sciences. Boca Raton, Florida: Chapman Hall/CRC. https://bobby.gramacy.com/surrogates/
Gramacy, R. B. (2007). tgp: An R Package for Bayesian Nonstationary, Semiparametric Nonlinear Regression and Design by Treed Gaussian Process Models. Journal of Statistical Software, 19(9). https://www.jstatsoft.org/v19/i09 doi:10.18637/jss.v019.i09
Robert B. Gramacy, Matthew Taddy (2010). Categorical Inputs, Sensitivity Analysis, Optimization and Importance Tempering with tgp Version 2, an R Package for Treed Gaussian Process Models. Journal of Statistical Software, 33(6), 1–48. https://www.jstatsoft.org/v33/i06/ doi:10.18637/jss.v033.i06
Gramacy, R. B., Lee, H. K. H. (2008). Bayesian treed Gaussian process models with an application to computer modeling. Journal of the American Statistical Association, 103(483), pp. 1119-1130. Also available as ArXiv article 0710.4536 https://arxiv.org/abs/0710.4536
https://bobby.gramacy.com/r_packages/tgp/
See Also
Examples
N <- 20
x <- seq(-2,6,length=N)
X <- expand.grid(x, x)
Zdata <- exp2d.Z(X)
persp(x,x,matrix(Zdata$Ztrue, nrow=N), theta=-30, phi=20,
main="Z true", xlab="x1", ylab="x2", zlab="Ztrue")