vi_amari_alpha {tfprobability}R Documentation

The Amari-alpha Csiszar-function in log-space

Description

A Csiszar-function is a member of ⁠F = { f:R_+ to R : f convex }⁠.

Usage

vi_amari_alpha(logu, alpha = 1, self_normalized = FALSE, name = NULL)

Arguments

logu

float-like Tensor representing log(u) from above.

alpha

float-like scalar.

self_normalized

logical indicating whether ⁠f'(u=1)=0⁠. When ⁠f'(u=1)=0⁠ the implied Csiszar f-Divergence remains non-negative even when ⁠p, q⁠ are unnormalized measures.

name

name prefixed to Ops created by this function.

Details

When self_normalized = TRUE, the Amari-alpha Csiszar-function is:

f(u) = { -log(u) + (u - 1)},     alpha = 0
       { u log(u) - (u - 1)},    alpha = 1
       { ((u^alpha - 1) - alpha (u - 1) / (alpha (alpha - 1))},    otherwise

When self_normalized = FALSE the (u - 1) terms are omitted.

Warning: when alpha != 0 and/or self_normalized = True this function makes non-log-space calculations and may therefore be numerically unstable for ⁠|logu| >> 0⁠.

Value

amari_alpha_of_u float-like Tensor of the Csiszar-function evaluated at u = exp(logu).

References

See Also

Other vi-functions: vi_arithmetic_geometric(), vi_chi_square(), vi_csiszar_vimco(), vi_dual_csiszar_function(), vi_fit_surrogate_posterior(), vi_jeffreys(), vi_jensen_shannon(), vi_kl_forward(), vi_kl_reverse(), vi_log1p_abs(), vi_modified_gan(), vi_monte_carlo_variational_loss(), vi_pearson(), vi_squared_hellinger(), vi_symmetrized_csiszar_function()


[Package tfprobability version 0.15.1 Index]