| tfd_sinh_arcsinh {tfprobability} | R Documentation |
The SinhArcsinh transformation of a distribution on (-inf, inf)
Description
This distribution models a random variable, making use of
a SinhArcsinh transformation (which has adjustable tailweight and skew),
a rescaling, and a shift.
The SinhArcsinh transformation of the Normal is described in great depth in
Sinh-arcsinh distributions.
Here we use a slightly different parameterization, in terms of tailweight
and skewness. Additionally we allow for distributions other than Normal,
and control over scale as well as a "shift" parameter loc.
Usage
tfd_sinh_arcsinh(
loc,
scale,
skewness = NULL,
tailweight = NULL,
distribution = NULL,
validate_args = FALSE,
allow_nan_stats = TRUE,
name = "SinhArcsinh"
)
Arguments
loc |
Floating-point |
scale |
|
skewness |
Skewness parameter. Default is |
tailweight |
Tailweight parameter. Default is |
distribution |
|
validate_args |
Logical, default FALSE. When TRUE distribution parameters are checked for validity despite possibly degrading runtime performance. When FALSE invalid inputs may silently render incorrect outputs. Default value: FALSE. |
allow_nan_stats |
Logical, default TRUE. When TRUE, statistics (e.g., mean, mode, variance) use the value NaN to indicate the result is undefined. When FALSE, an exception is raised if one or more of the statistic's batch members are undefined. |
name |
name prefixed to Ops created by this class. |
Details
Mathematical Details
Given random variable Z, we define the SinhArcsinh
transformation of Z, Y, parameterized by
(loc, scale, skewness, tailweight), via the relation:
Y := loc + scale * F(Z) * (2 / F_0(2)) F(Z) := Sinh( (Arcsinh(Z) + skewness) * tailweight ) F_0(Z) := Sinh( Arcsinh(Z) * tailweight )
This distribution is similar to the location-scale transformation
L(Z) := loc + scale * Z in the following ways:
If
skewness = 0andtailweight = 1(the defaults),F(Z) = Z, and thenY = L(Z)exactly.-
locis used in both to shift the result by a constant factor. The multiplication of
scaleby2 / F_0(2)ensures that ifskewness = 0P[Y - loc <= 2 * scale] = P[L(Z) - loc <= 2 * scale]. Thus it can be said that the weights in the tails ofYandL(Z)beyondloc + 2 * scaleare the same.
This distribution is different than loc + scale * Z due to the
reshaping done by F:
Positive (negative)
skewnessleads to positive (negative) skew.positive skew means, the mode of
F(Z)is "tilted" to the right.positive skew means positive values of
F(Z)become more likely, and negative values become less likely.Larger (smaller)
tailweightleads to fatter (thinner) tails.Fatter tails mean larger values of
|F(Z)|become more likely.-
tailweight < 1leads to a distribution that is "flat" aroundY = loc, and a very steep drop-off in the tails. -
tailweight > 1leads to a distribution more peaked at the mode with heavier tails.
To see the argument about the tails, note that for |Z| >> 1 and
|Z| >> (|skewness| * tailweight)**tailweight, we have
Y approx 0.5 Z**tailweight e**(sign(Z) skewness * tailweight).
To see the argument regarding multiplying scale by 2 / F_0(2),
P[(Y - loc) / scale <= 2] = P[F(Z) * (2 / F_0(2)) <= 2]
= P[F(Z) <= F_0(2)]
= P[Z <= 2] (if F = F_0).
Value
a distribution instance.
See Also
For usage examples see e.g. tfd_sample(), tfd_log_prob(), tfd_mean().
Other distributions:
tfd_autoregressive(),
tfd_batch_reshape(),
tfd_bates(),
tfd_bernoulli(),
tfd_beta_binomial(),
tfd_beta(),
tfd_binomial(),
tfd_categorical(),
tfd_cauchy(),
tfd_chi2(),
tfd_chi(),
tfd_cholesky_lkj(),
tfd_continuous_bernoulli(),
tfd_deterministic(),
tfd_dirichlet_multinomial(),
tfd_dirichlet(),
tfd_empirical(),
tfd_exp_gamma(),
tfd_exp_inverse_gamma(),
tfd_exponential(),
tfd_gamma_gamma(),
tfd_gamma(),
tfd_gaussian_process_regression_model(),
tfd_gaussian_process(),
tfd_generalized_normal(),
tfd_geometric(),
tfd_gumbel(),
tfd_half_cauchy(),
tfd_half_normal(),
tfd_hidden_markov_model(),
tfd_horseshoe(),
tfd_independent(),
tfd_inverse_gamma(),
tfd_inverse_gaussian(),
tfd_johnson_s_u(),
tfd_joint_distribution_named_auto_batched(),
tfd_joint_distribution_named(),
tfd_joint_distribution_sequential_auto_batched(),
tfd_joint_distribution_sequential(),
tfd_kumaraswamy(),
tfd_laplace(),
tfd_linear_gaussian_state_space_model(),
tfd_lkj(),
tfd_log_logistic(),
tfd_log_normal(),
tfd_logistic(),
tfd_mixture_same_family(),
tfd_mixture(),
tfd_multinomial(),
tfd_multivariate_normal_diag_plus_low_rank(),
tfd_multivariate_normal_diag(),
tfd_multivariate_normal_full_covariance(),
tfd_multivariate_normal_linear_operator(),
tfd_multivariate_normal_tri_l(),
tfd_multivariate_student_t_linear_operator(),
tfd_negative_binomial(),
tfd_normal(),
tfd_one_hot_categorical(),
tfd_pareto(),
tfd_pixel_cnn(),
tfd_poisson_log_normal_quadrature_compound(),
tfd_poisson(),
tfd_power_spherical(),
tfd_probit_bernoulli(),
tfd_quantized(),
tfd_relaxed_bernoulli(),
tfd_relaxed_one_hot_categorical(),
tfd_sample_distribution(),
tfd_skellam(),
tfd_spherical_uniform(),
tfd_student_t_process(),
tfd_student_t(),
tfd_transformed_distribution(),
tfd_triangular(),
tfd_truncated_cauchy(),
tfd_truncated_normal(),
tfd_uniform(),
tfd_variational_gaussian_process(),
tfd_vector_diffeomixture(),
tfd_vector_exponential_diag(),
tfd_vector_exponential_linear_operator(),
tfd_vector_laplace_diag(),
tfd_vector_laplace_linear_operator(),
tfd_vector_sinh_arcsinh_diag(),
tfd_von_mises_fisher(),
tfd_von_mises(),
tfd_weibull(),
tfd_wishart_linear_operator(),
tfd_wishart_tri_l(),
tfd_wishart(),
tfd_zipf()