tfd_dirichlet_multinomial {tfprobability} | R Documentation |
Dirichlet-Multinomial compound distribution
Description
The Dirichlet-Multinomial distribution is parameterized by a (batch of)
length-K
concentration
vectors (K > 1
) and a total_count
number of
trials, i.e., the number of trials per draw from the DirichletMultinomial. It
is defined over a (batch of) length-K
vector counts
such that
tf$reduce_sum(counts, -1) = total_count
. The Dirichlet-Multinomial is
identically the Beta-Binomial distribution when K = 2
.
Usage
tfd_dirichlet_multinomial(
total_count,
concentration,
validate_args = FALSE,
allow_nan_stats = TRUE,
name = "DirichletMultinomial"
)
Arguments
total_count |
Non-negative floating point tensor, whose dtype is the same
as |
concentration |
Positive floating point tensor, whose dtype is the
same as |
validate_args |
Logical, default FALSE. When TRUE distribution parameters are checked for validity despite possibly degrading runtime performance. When FALSE invalid inputs may silently render incorrect outputs. Default value: FALSE. |
allow_nan_stats |
Logical, default TRUE. When TRUE, statistics (e.g., mean, mode, variance) use the value NaN to indicate the result is undefined. When FALSE, an exception is raised if one or more of the statistic's batch members are undefined. |
name |
name prefixed to Ops created by this class. |
Details
Mathematical Details
The Dirichlet-Multinomial is a distribution over K
-class counts, i.e., a
length-K
vector of non-negative integer counts = n = [n_0, ..., n_{K-1}]
.
The probability mass function (pmf) is,
pmf(n; alpha, N) = Beta(alpha + n) / (prod_j n_j!) / Z Z = Beta(alpha) / N!
where:
-
concentration = alpha = [alpha_0, ..., alpha_{K-1}]
,alpha_j > 0
, -
total_count = N
,N
a positive integer, -
N!
isN
factorial, and, -
Beta(x) = prod_j Gamma(x_j) / Gamma(sum_j x_j)
is the multivariate beta function, and, -
Gamma
is the gamma function.
Dirichlet-Multinomial is a compound distribution, i.e., its samples are generated as follows.
Choose class probabilities:
probs = [p_0,...,p_{K-1}] ~ Dir(concentration)
Draw integers:
counts = [n_0,...,n_{K-1}] ~ Multinomial(total_count, probs)
The last concentration
dimension parametrizes a single Dirichlet-Multinomial
distribution. When calling distribution functions (e.g., dist$prob(counts)
),
concentration
, total_count
and counts
are broadcast to the same shape.
The last dimension of counts
corresponds single Dirichlet-Multinomial distributions.
Distribution parameters are automatically broadcast in all functions; see examples for details.
Pitfalls
The number of classes, K
, must not exceed:
the largest integer representable by
self$dtype
, i.e.,2**(mantissa_bits+1)
(IEE754),the maximum
Tensor
index, i.e.,2**31-1
.
Note: This condition is validated only when validate_args = TRUE
.
Value
a distribution instance.
See Also
For usage examples see e.g. tfd_sample()
, tfd_log_prob()
, tfd_mean()
.
Other distributions:
tfd_autoregressive()
,
tfd_batch_reshape()
,
tfd_bates()
,
tfd_bernoulli()
,
tfd_beta_binomial()
,
tfd_beta()
,
tfd_binomial()
,
tfd_categorical()
,
tfd_cauchy()
,
tfd_chi2()
,
tfd_chi()
,
tfd_cholesky_lkj()
,
tfd_continuous_bernoulli()
,
tfd_deterministic()
,
tfd_dirichlet()
,
tfd_empirical()
,
tfd_exp_gamma()
,
tfd_exp_inverse_gamma()
,
tfd_exponential()
,
tfd_gamma_gamma()
,
tfd_gamma()
,
tfd_gaussian_process_regression_model()
,
tfd_gaussian_process()
,
tfd_generalized_normal()
,
tfd_geometric()
,
tfd_gumbel()
,
tfd_half_cauchy()
,
tfd_half_normal()
,
tfd_hidden_markov_model()
,
tfd_horseshoe()
,
tfd_independent()
,
tfd_inverse_gamma()
,
tfd_inverse_gaussian()
,
tfd_johnson_s_u()
,
tfd_joint_distribution_named_auto_batched()
,
tfd_joint_distribution_named()
,
tfd_joint_distribution_sequential_auto_batched()
,
tfd_joint_distribution_sequential()
,
tfd_kumaraswamy()
,
tfd_laplace()
,
tfd_linear_gaussian_state_space_model()
,
tfd_lkj()
,
tfd_log_logistic()
,
tfd_log_normal()
,
tfd_logistic()
,
tfd_mixture_same_family()
,
tfd_mixture()
,
tfd_multinomial()
,
tfd_multivariate_normal_diag_plus_low_rank()
,
tfd_multivariate_normal_diag()
,
tfd_multivariate_normal_full_covariance()
,
tfd_multivariate_normal_linear_operator()
,
tfd_multivariate_normal_tri_l()
,
tfd_multivariate_student_t_linear_operator()
,
tfd_negative_binomial()
,
tfd_normal()
,
tfd_one_hot_categorical()
,
tfd_pareto()
,
tfd_pixel_cnn()
,
tfd_poisson_log_normal_quadrature_compound()
,
tfd_poisson()
,
tfd_power_spherical()
,
tfd_probit_bernoulli()
,
tfd_quantized()
,
tfd_relaxed_bernoulli()
,
tfd_relaxed_one_hot_categorical()
,
tfd_sample_distribution()
,
tfd_sinh_arcsinh()
,
tfd_skellam()
,
tfd_spherical_uniform()
,
tfd_student_t_process()
,
tfd_student_t()
,
tfd_transformed_distribution()
,
tfd_triangular()
,
tfd_truncated_cauchy()
,
tfd_truncated_normal()
,
tfd_uniform()
,
tfd_variational_gaussian_process()
,
tfd_vector_diffeomixture()
,
tfd_vector_exponential_diag()
,
tfd_vector_exponential_linear_operator()
,
tfd_vector_laplace_diag()
,
tfd_vector_laplace_linear_operator()
,
tfd_vector_sinh_arcsinh_diag()
,
tfd_von_mises_fisher()
,
tfd_von_mises()
,
tfd_weibull()
,
tfd_wishart_linear_operator()
,
tfd_wishart_tri_l()
,
tfd_wishart()
,
tfd_zipf()