| tfb_pad {tfprobability} | R Documentation |
Pads a value to the event_shape of a Tensor.
Description
The semantics of bijector_pad generally follow that of tf$pad()
except that bijector_pad's paddings argument applies to the rightmost
dimensions. Additionally, the new argument axis enables overriding the
dimensions to which paddings is applied. Like paddings, the axis
argument is also relative to the rightmost dimension and must therefore be
negative.
The argument paddings is a vector of integer pairs each representing the
number of left and/or right constant_values to pad to the corresponding
righmost dimensions. That is, unless axis is specified, specifiying kdifferentpaddingsmeans the rightmostkdimensions will be "grown" by the sum of the respectivepaddingsrow. Whenaxisis specified, it indicates the dimension to which the correspondingpaddingselement is applied. By defaultaxisisNULLwhich means it is logically equivalent torange(start=-len(paddings), limit=0)', i.e., the rightmost dimensions.
Usage
tfb_pad(
paddings = list(c(0, 1)),
mode = "CONSTANT",
constant_values = 0,
axis = NULL,
validate_args = FALSE,
name = NULL
)
Arguments
paddings |
A vector-shaped |
mode |
One of |
constant_values |
In "CONSTANT" mode, the scalar pad value to use. Must be
same type as |
axis |
The dimensions for which |
validate_args |
Logical, default FALSE. Whether to validate input with asserts. If validate_args is FALSE, and the inputs are invalid, correct behavior is not guaranteed. |
name |
name prefixed to Ops created by this class. |
Value
a bijector instance.
See Also
For usage examples see tfb_forward(), tfb_inverse(), tfb_inverse_log_det_jacobian().
Other bijectors:
tfb_absolute_value(),
tfb_affine_linear_operator(),
tfb_affine_scalar(),
tfb_affine(),
tfb_ascending(),
tfb_batch_normalization(),
tfb_blockwise(),
tfb_chain(),
tfb_cholesky_outer_product(),
tfb_cholesky_to_inv_cholesky(),
tfb_correlation_cholesky(),
tfb_cumsum(),
tfb_discrete_cosine_transform(),
tfb_expm1(),
tfb_exp(),
tfb_ffjord(),
tfb_fill_scale_tri_l(),
tfb_fill_triangular(),
tfb_glow(),
tfb_gompertz_cdf(),
tfb_gumbel_cdf(),
tfb_gumbel(),
tfb_identity(),
tfb_inline(),
tfb_invert(),
tfb_iterated_sigmoid_centered(),
tfb_kumaraswamy_cdf(),
tfb_kumaraswamy(),
tfb_lambert_w_tail(),
tfb_masked_autoregressive_default_template(),
tfb_masked_autoregressive_flow(),
tfb_masked_dense(),
tfb_matrix_inverse_tri_l(),
tfb_matvec_lu(),
tfb_normal_cdf(),
tfb_ordered(),
tfb_permute(),
tfb_power_transform(),
tfb_rational_quadratic_spline(),
tfb_rayleigh_cdf(),
tfb_real_nvp_default_template(),
tfb_real_nvp(),
tfb_reciprocal(),
tfb_reshape(),
tfb_scale_matvec_diag(),
tfb_scale_matvec_linear_operator(),
tfb_scale_matvec_lu(),
tfb_scale_matvec_tri_l(),
tfb_scale_tri_l(),
tfb_scale(),
tfb_shifted_gompertz_cdf(),
tfb_shift(),
tfb_sigmoid(),
tfb_sinh_arcsinh(),
tfb_sinh(),
tfb_softmax_centered(),
tfb_softplus(),
tfb_softsign(),
tfb_split(),
tfb_square(),
tfb_tanh(),
tfb_transform_diagonal(),
tfb_transpose(),
tfb_weibull_cdf(),
tfb_weibull()