tfb_batch_normalization {tfprobability} | R Documentation |
ComputesY = g(X)
s.t. X = g^-1(Y) = (Y - mean(Y)) / std(Y)
Description
Applies Batch Normalization (Ioffe and Szegedy, 2015) to samples from a data distribution. This can be used to stabilize training of normalizing flows (Papamakarios et al., 2016; Dinh et al., 2017)
Usage
tfb_batch_normalization(
batchnorm_layer = NULL,
training = TRUE,
validate_args = FALSE,
name = "batch_normalization"
)
Arguments
batchnorm_layer |
|
training |
If TRUE, updates running-average statistics during call to inverse(). |
validate_args |
Logical, default FALSE. Whether to validate input with asserts. If validate_args is FALSE, and the inputs are invalid, correct behavior is not guaranteed. |
name |
name prefixed to Ops created by this class. |
Details
When training Deep Neural Networks (DNNs), it is common practice to normalize or whiten features by shifting them to have zero mean and scaling them to have unit variance.
The inverse()
method of the BatchNormalization bijector, which is used in
the log-likelihood computation of data samples, implements the normalization
procedure (shift-and-scale) using the mean and standard deviation of the
current minibatch.
Conversely, the forward()
method of the bijector de-normalizes samples (e.g.
X*std(Y) + mean(Y)
with the running-average mean and standard deviation
computed at training-time. De-normalization is useful for sampling.
During training time, BatchNormalization.inverse and BatchNormalization.forward are not
guaranteed to be inverses of each other because inverse(y)
uses statistics of the current minibatch,
while forward(x)
uses running-average statistics accumulated from training.
In other words, tfb_batch_normalization()$inverse(tfb_batch_normalization()$forward(...))
and
tfb_batch_normalization()$forward(tfb_batch_normalization()$inverse(...))
will be identical when
training=FALSE but may be different when training=TRUE.
Value
a bijector instance.
References
See Also
For usage examples see tfb_forward()
, tfb_inverse()
, tfb_inverse_log_det_jacobian()
.
Other bijectors:
tfb_absolute_value()
,
tfb_affine_linear_operator()
,
tfb_affine_scalar()
,
tfb_affine()
,
tfb_ascending()
,
tfb_blockwise()
,
tfb_chain()
,
tfb_cholesky_outer_product()
,
tfb_cholesky_to_inv_cholesky()
,
tfb_correlation_cholesky()
,
tfb_cumsum()
,
tfb_discrete_cosine_transform()
,
tfb_expm1()
,
tfb_exp()
,
tfb_ffjord()
,
tfb_fill_scale_tri_l()
,
tfb_fill_triangular()
,
tfb_glow()
,
tfb_gompertz_cdf()
,
tfb_gumbel_cdf()
,
tfb_gumbel()
,
tfb_identity()
,
tfb_inline()
,
tfb_invert()
,
tfb_iterated_sigmoid_centered()
,
tfb_kumaraswamy_cdf()
,
tfb_kumaraswamy()
,
tfb_lambert_w_tail()
,
tfb_masked_autoregressive_default_template()
,
tfb_masked_autoregressive_flow()
,
tfb_masked_dense()
,
tfb_matrix_inverse_tri_l()
,
tfb_matvec_lu()
,
tfb_normal_cdf()
,
tfb_ordered()
,
tfb_pad()
,
tfb_permute()
,
tfb_power_transform()
,
tfb_rational_quadratic_spline()
,
tfb_rayleigh_cdf()
,
tfb_real_nvp_default_template()
,
tfb_real_nvp()
,
tfb_reciprocal()
,
tfb_reshape()
,
tfb_scale_matvec_diag()
,
tfb_scale_matvec_linear_operator()
,
tfb_scale_matvec_lu()
,
tfb_scale_matvec_tri_l()
,
tfb_scale_tri_l()
,
tfb_scale()
,
tfb_shifted_gompertz_cdf()
,
tfb_shift()
,
tfb_sigmoid()
,
tfb_sinh_arcsinh()
,
tfb_sinh()
,
tfb_softmax_centered()
,
tfb_softplus()
,
tfb_softsign()
,
tfb_split()
,
tfb_square()
,
tfb_tanh()
,
tfb_transform_diagonal()
,
tfb_transpose()
,
tfb_weibull_cdf()
,
tfb_weibull()