sts_local_linear_trend_state_space_model {tfprobability} | R Documentation |
State space model for a local linear trend
Description
A state space model (SSM) posits a set of latent (unobserved) variables that
evolve over time with dynamics specified by a probabilistic transition model
p(z[t+1] | z[t])
. At each timestep, we observe a value sampled from an
observation model conditioned on the current state, p(x[t] | z[t])
. The
special case where both the transition and observation models are Gaussians
with mean specified as a linear function of the inputs, is known as a linear
Gaussian state space model and supports tractable exact probabilistic
calculations; see tfd_linear_gaussian_state_space_model
for details.
Usage
sts_local_linear_trend_state_space_model(
num_timesteps,
level_scale,
slope_scale,
initial_state_prior,
observation_noise_scale = 0,
initial_step = 0,
validate_args = FALSE,
allow_nan_stats = TRUE,
name = NULL
)
Arguments
num_timesteps |
Scalar |
level_scale |
Scalar (any additional dimensions are treated as batch
dimensions) |
slope_scale |
Scalar (any additional dimensions are treated as batch
dimensions) |
initial_state_prior |
instance of |
observation_noise_scale |
Scalar (any additional dimensions are
treated as batch dimensions) |
initial_step |
Optional scalar |
validate_args |
|
allow_nan_stats |
|
name |
string prefixed to ops created by this class. Default value: "LocalLinearTrendStateSpaceModel". |
Details
The local linear trend model is a special case of a linear Gaussian SSM, in
which the latent state posits a level
and slope
, each evolving via a
Gaussian random walk:
level[t] = level[t-1] + slope[t-1] + Normal(0., level_scale) slope[t] = slope[t-1] + Normal(0., slope_scale)
The latent state is the two-dimensional tuple [level, slope]
. The
level
is observed at each timestep.
The parameters level_scale
, slope_scale
, and observation_noise_scale
are each (a batch of) scalars. The batch shape of this Distribution
is the
broadcast batch shape of these parameters and of the initial_state_prior
.
Mathematical Details
The linear trend model implements a tfd_linear_gaussian_state_space_model
with latent_size = 2
and observation_size = 1
, following the transition model:
transition_matrix = [[1., 1.] [0., 1.]] transition_noise ~ N(loc = 0, scale = diag([level_scale, slope_scale]))
which implements the evolution of [level, slope]
described above, and the observation model:
observation_matrix = [[1., 0.]] observation_noise ~ N(loc= 0 , scale = observation_noise_scale)
which picks out the first latent component, i.e., the level
, as the
observation at each timestep.
Value
an instance of LinearGaussianStateSpaceModel
.
See Also
Other sts:
sts_additive_state_space_model()
,
sts_autoregressive_state_space_model()
,
sts_autoregressive()
,
sts_constrained_seasonal_state_space_model()
,
sts_dynamic_linear_regression_state_space_model()
,
sts_dynamic_linear_regression()
,
sts_linear_regression()
,
sts_local_level_state_space_model()
,
sts_local_level()
,
sts_local_linear_trend()
,
sts_seasonal_state_space_model()
,
sts_seasonal()
,
sts_semi_local_linear_trend_state_space_model()
,
sts_semi_local_linear_trend()
,
sts_smooth_seasonal_state_space_model()
,
sts_smooth_seasonal()
,
sts_sparse_linear_regression()
,
sts_sum()