| sts_dynamic_linear_regression {tfprobability} | R Documentation |
Formal representation of a dynamic linear regression model.
Description
The dynamic linear regression model is a special case of a linear Gaussian SSM
and a generalization of typical (static) linear regression. The model
represents regression weights with a latent state which evolves via a
Gaussian random walk:
Usage
sts_dynamic_linear_regression(
observed_time_series = NULL,
design_matrix,
drift_scale_prior = NULL,
initial_weights_prior = NULL,
name = NULL
)
Arguments
observed_time_series |
optional |
design_matrix |
float |
drift_scale_prior |
instance of |
initial_weights_prior |
instance of |
name |
the name of this component. Default value: 'DynamicLinearRegression'. |
Details
weights[t] ~ Normal(weights[t-1], drift_scale)
The latent state has dimension num_features, while the parameters
drift_scale and observation_noise_scale are each (a batch of) scalars. The
batch shape of this distribution is the broadcast batch shape of these
parameters, the initial_state_prior, and the design_matrix.
num_features is determined from the last dimension of design_matrix (equivalent to the
number of columns in the design matrix in linear regression).
Value
an instance of StructuralTimeSeries.
See Also
For usage examples see sts_fit_with_hmc(), sts_forecast(), sts_decompose_by_component().
Other sts:
sts_additive_state_space_model(),
sts_autoregressive_state_space_model(),
sts_autoregressive(),
sts_constrained_seasonal_state_space_model(),
sts_dynamic_linear_regression_state_space_model(),
sts_linear_regression(),
sts_local_level_state_space_model(),
sts_local_level(),
sts_local_linear_trend_state_space_model(),
sts_local_linear_trend(),
sts_seasonal_state_space_model(),
sts_seasonal(),
sts_semi_local_linear_trend_state_space_model(),
sts_semi_local_linear_trend(),
sts_smooth_seasonal_state_space_model(),
sts_smooth_seasonal(),
sts_sparse_linear_regression(),
sts_sum()