| sts_build_factored_surrogate_posterior {tfprobability} | R Documentation |
Build a variational posterior that factors over model parameters.
Description
The surrogate posterior consists of independent Normal distributions for
each parameter with trainable loc and scale, transformed using the
parameter's bijector to the appropriate support space for that parameter.
Usage
sts_build_factored_surrogate_posterior(
model,
batch_shape = list(),
seed = NULL,
name = NULL
)
Arguments
model |
An instance of |
batch_shape |
Batch shape ( |
seed |
integer to seed the random number generator. |
name |
string prefixed to ops created by this function.
Default value: |
Value
variational_posterior tfd_joint_distribution_named defining a trainable
surrogate posterior over model parameters. Samples from this
distribution are named lists with character parameter names as keys.
See Also
Other sts-functions:
sts_build_factored_variational_loss(),
sts_decompose_by_component(),
sts_decompose_forecast_by_component(),
sts_fit_with_hmc(),
sts_forecast(),
sts_one_step_predictive(),
sts_sample_uniform_initial_state()