mcmc_uncalibrated_langevin {tfprobability} | R Documentation |
Runs one step of Uncalibrated Langevin discretized diffusion.
Description
The class generates a Langevin proposal using _euler_method
function and
also computes helper UncalibratedLangevinKernelResults
for the next
iteration.
Warning: this kernel will not result in a chain which converges to the
target_log_prob
. To get a convergent MCMC, use
MetropolisAdjustedLangevinAlgorithm(...)
or MetropolisHastings(UncalibratedLangevin(...))
.
Usage
mcmc_uncalibrated_langevin(
target_log_prob_fn,
step_size,
volatility_fn = NULL,
parallel_iterations = 10,
compute_acceptance = TRUE,
seed = NULL,
name = NULL
)
Arguments
target_log_prob_fn |
Function which takes an argument like
|
step_size |
|
volatility_fn |
function which takes an argument like
|
parallel_iterations |
the number of coordinates for which the gradients of
the volatility matrix |
compute_acceptance |
logical indicating whether to compute the
Metropolis log-acceptance ratio used to construct |
seed |
integer to seed the random number generator. |
name |
String prefixed to Ops created by this function.
Default value: |
Value
list of
next_state
(Tensor or Python list of Tensor
s representing the state(s)
of the Markov chain(s) at each result step. Has same shape as
and current_state
.) and
kernel_results
(collections$namedtuple
of internal calculations used to
'advance the chain).
See Also
Other mcmc_kernels:
mcmc_dual_averaging_step_size_adaptation()
,
mcmc_hamiltonian_monte_carlo()
,
mcmc_metropolis_adjusted_langevin_algorithm()
,
mcmc_metropolis_hastings()
,
mcmc_no_u_turn_sampler()
,
mcmc_random_walk_metropolis()
,
mcmc_replica_exchange_mc()
,
mcmc_simple_step_size_adaptation()
,
mcmc_slice_sampler()
,
mcmc_transformed_transition_kernel()
,
mcmc_uncalibrated_hamiltonian_monte_carlo()
,
mcmc_uncalibrated_random_walk()