| layer_dense_variational {tfprobability} | R Documentation |
Dense Variational Layer
Description
This layer uses variational inference to fit a "surrogate" posterior to the
distribution over both the kernel matrix and the bias terms which are
otherwise used in a manner similar to layer_dense().
This layer fits the "weights posterior" according to the following generative
process:
[K, b] ~ Prior() M = matmul(X, K) + b Y ~ Likelihood(M)
Usage
layer_dense_variational(
object,
units,
make_posterior_fn,
make_prior_fn,
kl_weight = NULL,
kl_use_exact = FALSE,
activation = NULL,
use_bias = TRUE,
...
)
Arguments
object |
What to compose the new
|
units |
Positive integer, dimensionality of the output space. |
make_posterior_fn |
function taking |
make_prior_fn |
function taking |
kl_weight |
Amount by which to scale the KL divergence loss between prior and posterior. |
kl_use_exact |
Logical indicating that the analytical KL divergence should be used rather than a Monte Carlo approximation. |
activation |
An activation function. See |
use_bias |
Whether or not the dense layers constructed in this layer
should have a bias term. See |
... |
Additional keyword arguments passed to the |
Value
a Keras layer
See Also
Other layers:
layer_autoregressive(),
layer_conv_1d_flipout(),
layer_conv_1d_reparameterization(),
layer_conv_2d_flipout(),
layer_conv_2d_reparameterization(),
layer_conv_3d_flipout(),
layer_conv_3d_reparameterization(),
layer_dense_flipout(),
layer_dense_local_reparameterization(),
layer_dense_reparameterization(),
layer_variable()