| layer_categorical_mixture_of_one_hot_categorical {tfprobability} | R Documentation |
A OneHotCategorical mixture Keras layer from k * (1 + d) params.
Description
k (i.e., num_components) represents the number of component
OneHotCategorical distributions and d (i.e., event_size) represents the
number of categories within each OneHotCategorical distribution.
Usage
layer_categorical_mixture_of_one_hot_categorical(
object,
event_size,
num_components,
convert_to_tensor_fn = tfp$distributions$Distribution$sample,
sample_dtype = NULL,
validate_args = FALSE,
...
)
Arguments
object |
What to compose the new
|
event_size |
Scalar |
num_components |
Scalar |
convert_to_tensor_fn |
A callable that takes a tfd$Distribution instance and returns a
tf$Tensor-like object. Default value: |
sample_dtype |
|
validate_args |
Logical, default FALSE. When TRUE distribution parameters are checked for validity despite possibly degrading runtime performance. When FALSE invalid inputs may silently render incorrect outputs. Default value: FALSE. |
... |
Additional arguments passed to |
Details
Typical choices for convert_to_tensor_fn include:
-
tfp$distributions$Distribution$sample -
tfp$distributions$Distribution$mean -
tfp$distributions$Distribution$mode
Value
a Keras layer
See Also
For an example how to use in a Keras model, see layer_independent_normal().
Other distribution_layers:
layer_distribution_lambda(),
layer_independent_bernoulli(),
layer_independent_logistic(),
layer_independent_normal(),
layer_independent_poisson(),
layer_kl_divergence_add_loss(),
layer_kl_divergence_regularizer(),
layer_mixture_logistic(),
layer_mixture_normal(),
layer_mixture_same_family(),
layer_multivariate_normal_tri_l(),
layer_one_hot_categorical()