| glm_families {tfprobability} | R Documentation |
GLM families
Description
A list of models that can be used as the model argument in glm_fit():
Details
-
Bernoulli:Bernoulli(probs=mean)wheremean = sigmoid(matmul(X, weights)) -
BernoulliNormalCDF:Bernoulli(probs=mean)wheremean = Normal(0, 1).cdf(matmul(X, weights)) -
GammaExp:Gamma(concentration=1, rate=1 / mean)wheremean = exp(matmul(X, weights)) -
GammaSoftplus:Gamma(concentration=1, rate=1 / mean)wheremean = softplus(matmul(X, weights)) -
LogNormal:LogNormal(loc=log(mean) - log(2) / 2, scale=sqrt(log(2)))wheremean = exp(matmul(X, weights)). -
LogNormalSoftplus:LogNormal(loc=log(mean) - log(2) / 2, scale=sqrt(log(2)))wheremean = softplus(matmul(X, weights)) -
Normal:Normal(loc=mean, scale=1)wheremean = matmul(X, weights). -
NormalReciprocal:Normal(loc=mean, scale=1)wheremean = 1 / matmul(X, weights) -
Poisson:Poisson(rate=mean)wheremean = exp(matmul(X, weights)). -
PoissonSoftplus:Poisson(rate=mean)wheremean = softplus(matmul(X, weights)).
Value
list of models that can be used as the model argument in glm_fit()
See Also
Other glm_fit:
glm_fit.tensorflow.tensor(),
glm_fit_one_step.tensorflow.tensor()