step_crossed_column {tfdatasets} | R Documentation |
Creates crosses of categorical columns
Description
Use this step to create crosses between categorical columns.
Usage
step_crossed_column(spec, ..., hash_bucket_size, hash_key = NULL)
Arguments
spec |
A feature specification created with |
... |
Comma separated list of variable names to apply the step. selectors can also be used. |
hash_bucket_size |
An int > 1. The number of buckets. |
hash_key |
(optional) Specify the hash_key that will be used by the FingerprintCat64 function to combine the crosses fingerprints on SparseCrossOp. |
Value
a FeatureSpec
object.
See Also
steps for a complete list of allowed steps.
Other Feature Spec Functions:
dataset_use_spec()
,
feature_spec()
,
fit.FeatureSpec()
,
step_bucketized_column()
,
step_categorical_column_with_hash_bucket()
,
step_categorical_column_with_identity()
,
step_categorical_column_with_vocabulary_file()
,
step_categorical_column_with_vocabulary_list()
,
step_embedding_column()
,
step_indicator_column()
,
step_numeric_column()
,
step_remove_column()
,
step_shared_embeddings_column()
,
steps
Examples
## Not run:
library(tfdatasets)
data(hearts)
file <- tempfile()
writeLines(unique(hearts$thal), file)
hearts <- tensor_slices_dataset(hearts) %>% dataset_batch(32)
# use the formula interface
spec <- feature_spec(hearts, target ~ age) %>%
step_numeric_column(age) %>%
step_bucketized_column(age, boundaries = c(10, 20, 30))
spec_fit <- fit(spec)
final_dataset <- hearts %>% dataset_use_spec(spec_fit)
## End(Not run)