step_categorical_column_with_hash_bucket {tfdatasets} | R Documentation |
Creates a categorical column with hash buckets specification
Description
Represents sparse feature where ids are set by hashing.
Usage
step_categorical_column_with_hash_bucket(
spec,
...,
hash_bucket_size,
dtype = tf$string
)
Arguments
spec |
A feature specification created with |
... |
Comma separated list of variable names to apply the step. selectors can also be used. |
hash_bucket_size |
An int > 1. The number of buckets. |
dtype |
The type of features. Only string and integer types are supported. |
Value
a FeatureSpec
object.
See Also
steps for a complete list of allowed steps.
Other Feature Spec Functions:
dataset_use_spec()
,
feature_spec()
,
fit.FeatureSpec()
,
step_bucketized_column()
,
step_categorical_column_with_identity()
,
step_categorical_column_with_vocabulary_file()
,
step_categorical_column_with_vocabulary_list()
,
step_crossed_column()
,
step_embedding_column()
,
step_indicator_column()
,
step_numeric_column()
,
step_remove_column()
,
step_shared_embeddings_column()
,
steps
Examples
## Not run:
library(tfdatasets)
data(hearts)
hearts <- tensor_slices_dataset(hearts) %>% dataset_batch(32)
# use the formula interface
spec <- feature_spec(hearts, target ~ thal) %>%
step_categorical_column_with_hash_bucket(thal, hash_bucket_size = 3)
spec_fit <- fit(spec)
final_dataset <- hearts %>% dataset_use_spec(spec_fit)
## End(Not run)