feature_spec {tfdatasets} | R Documentation |
Creates a feature specification.
Description
Used to create initialize a feature columns specification.
Usage
feature_spec(dataset, x, y = NULL)
Arguments
dataset |
A TensorFlow dataset. |
x |
Features to include can use |
y |
(Optional) The response variable. Can also be specified using
a |
Details
After creating the feature_spec
object you can add steps using the
step
functions.
Value
a FeatureSpec
object.
See Also
-
fit.FeatureSpec()
to fit the FeatureSpec -
dataset_use_spec()
to create a tensorflow dataset prepared to modeling. -
steps to a list of all implemented steps.
Other Feature Spec Functions:
dataset_use_spec()
,
fit.FeatureSpec()
,
step_bucketized_column()
,
step_categorical_column_with_hash_bucket()
,
step_categorical_column_with_identity()
,
step_categorical_column_with_vocabulary_file()
,
step_categorical_column_with_vocabulary_list()
,
step_crossed_column()
,
step_embedding_column()
,
step_indicator_column()
,
step_numeric_column()
,
step_remove_column()
,
step_shared_embeddings_column()
,
steps
Examples
## Not run:
library(tfdatasets)
data(hearts)
hearts <- tensor_slices_dataset(hearts) %>% dataset_batch(32)
# use the formula interface
spec <- feature_spec(hearts, target ~ .)
# select using `tidyselect` helpers
spec <- feature_spec(hearts, x = c(thal, age), y = target)
## End(Not run)