| feature_spec {tfdatasets} | R Documentation |
Creates a feature specification.
Description
Used to create initialize a feature columns specification.
Usage
feature_spec(dataset, x, y = NULL)
Arguments
dataset |
A TensorFlow dataset. |
x |
Features to include can use |
y |
(Optional) The response variable. Can also be specified using
a |
Details
After creating the feature_spec object you can add steps using the
step functions.
Value
a FeatureSpec object.
See Also
-
fit.FeatureSpec()to fit the FeatureSpec -
dataset_use_spec()to create a tensorflow dataset prepared to modeling. -
steps to a list of all implemented steps.
Other Feature Spec Functions:
dataset_use_spec(),
fit.FeatureSpec(),
step_bucketized_column(),
step_categorical_column_with_hash_bucket(),
step_categorical_column_with_identity(),
step_categorical_column_with_vocabulary_file(),
step_categorical_column_with_vocabulary_list(),
step_crossed_column(),
step_embedding_column(),
step_indicator_column(),
step_numeric_column(),
step_remove_column(),
step_shared_embeddings_column(),
steps
Examples
## Not run:
library(tfdatasets)
data(hearts)
hearts <- tensor_slices_dataset(hearts) %>% dataset_batch(32)
# use the formula interface
spec <- feature_spec(hearts, target ~ .)
# select using `tidyselect` helpers
spec <- feature_spec(hearts, x = c(thal, age), y = target)
## End(Not run)