dataset_padded_batch {tfdatasets} | R Documentation |
Combines consecutive elements of this dataset into padded batches.
Description
Combines consecutive elements of this dataset into padded batches.
Usage
dataset_padded_batch(
dataset,
batch_size,
padded_shapes = NULL,
padding_values = NULL,
drop_remainder = FALSE,
name = NULL
)
Arguments
dataset |
A dataset |
batch_size |
An integer, representing the number of consecutive elements of this dataset to combine in a single batch. |
padded_shapes |
(Optional.) A (nested) structure of
|
padding_values |
(Optional.) A (nested) structure of scalar-shaped
|
drop_remainder |
(Optional.) A boolean scalar, representing
whether the last batch should be dropped in the case it has fewer than
|
name |
(Optional.) A name for the tf.data operation. Requires tensorflow version >= 2.7. |
Details
This transformation combines multiple consecutive elements of the input dataset into a single element.
Like dataset_batch()
, the components of the resulting element will
have an additional outer dimension, which will be batch_size
(or
N %% batch_size
for the last element if batch_size
does not divide the
number of input elements N
evenly and drop_remainder
is FALSE
). If
your program depends on the batches having the same outer dimension, you
should set the drop_remainder
argument to TRUE
to prevent the smaller
batch from being produced.
Unlike dataset_batch()
, the input elements to be batched may have
different shapes, and this transformation will pad each component to the
respective shape in padded_shapes
. The padded_shapes
argument
determines the resulting shape for each dimension of each component in an
output element:
If the dimension is a constant, the component will be padded out to that length in that dimension.
If the dimension is unknown, the component will be padded out to the maximum length of all elements in that dimension.
See also tf$data$experimental$dense_to_sparse_batch
, which combines
elements that may have different shapes into a tf$sparse$SparseTensor
.
Value
A tf_dataset
See Also
Other dataset methods:
dataset_batch()
,
dataset_cache()
,
dataset_collect()
,
dataset_concatenate()
,
dataset_decode_delim()
,
dataset_filter()
,
dataset_interleave()
,
dataset_map()
,
dataset_map_and_batch()
,
dataset_prefetch()
,
dataset_prefetch_to_device()
,
dataset_reduce()
,
dataset_repeat()
,
dataset_shuffle()
,
dataset_shuffle_and_repeat()
,
dataset_skip()
,
dataset_take()
,
dataset_take_while()
,
dataset_window()
Examples
## Not run:
A <- range_dataset(1, 5, dtype = tf$int32) %>%
dataset_map(function(x) tf$fill(list(x), x))
# Pad to the smallest per-batch size that fits all elements.
B <- A %>% dataset_padded_batch(2)
B %>% as_array_iterator() %>% iterate(print)
# Pad to a fixed size.
C <- A %>% dataset_padded_batch(2, padded_shapes=5)
C %>% as_array_iterator() %>% iterate(print)
# Pad with a custom value.
D <- A %>% dataset_padded_batch(2, padded_shapes=5, padding_values = -1L)
D %>% as_array_iterator() %>% iterate(print)
# Pad with a single value and multiple components.
E <- zip_datasets(A, A) %>% dataset_padded_batch(2, padding_values = -1L)
E %>% as_array_iterator() %>% iterate(print)
## End(Not run)