dataset_map_and_batch {tfdatasets} | R Documentation |
Fused implementation of dataset_map() and dataset_batch()
Description
Maps 'map_func“ across batch_size consecutive elements of this dataset and then combines them into a batch. Functionally, it is equivalent to map followed by batch. However, by fusing the two transformations together, the implementation can be more efficient.
Usage
dataset_map_and_batch(
dataset,
map_func,
batch_size,
num_parallel_batches = NULL,
drop_remainder = FALSE,
num_parallel_calls = NULL
)
Arguments
dataset |
A dataset |
map_func |
A function mapping a nested structure of tensors (having
shapes and types defined by |
batch_size |
An integer, representing the number of consecutive elements of this dataset to combine in a single batch. |
num_parallel_batches |
(Optional) An integer, representing the number of batches to create in parallel. On one hand, higher values can help mitigate the effect of stragglers. On the other hand, higher values can increase contention if CPU is scarce. |
drop_remainder |
(Optional.) A boolean, representing whether the last
batch should be dropped in the case it has fewer than |
num_parallel_calls |
(Optional) An integer, representing the number of elements to process in parallel If not specified, elements will be processed sequentially. |
See Also
Other dataset methods:
dataset_batch()
,
dataset_cache()
,
dataset_collect()
,
dataset_concatenate()
,
dataset_decode_delim()
,
dataset_filter()
,
dataset_interleave()
,
dataset_map()
,
dataset_padded_batch()
,
dataset_prefetch()
,
dataset_prefetch_to_device()
,
dataset_reduce()
,
dataset_repeat()
,
dataset_shuffle()
,
dataset_shuffle_and_repeat()
,
dataset_skip()
,
dataset_take()
,
dataset_take_while()
,
dataset_window()