| dataset_interleave {tfdatasets} | R Documentation |
Maps map_func across this dataset, and interleaves the results
Description
Maps map_func across this dataset, and interleaves the results
Usage
dataset_interleave(dataset, map_func, cycle_length, block_length = 1)
Arguments
dataset |
A dataset |
map_func |
A function mapping a nested structure of tensors (having
shapes and types defined by |
cycle_length |
The number of elements from this dataset that will be processed concurrently. |
block_length |
The number of consecutive elements to produce from each input element before cycling to another input element. |
Details
The cycle_length and block_length arguments control the order in which
elements are produced. cycle_length controls the number of input elements
that are processed concurrently. In general, this transformation will apply
map_func to cycle_length input elements, open iterators on the returned
dataset objects, and cycle through them producing block_length consecutive
elements from each iterator, and consuming the next input element each time
it reaches the end of an iterator.
See Also
Other dataset methods:
dataset_batch(),
dataset_cache(),
dataset_collect(),
dataset_concatenate(),
dataset_decode_delim(),
dataset_filter(),
dataset_map(),
dataset_map_and_batch(),
dataset_padded_batch(),
dataset_prefetch(),
dataset_prefetch_to_device(),
dataset_reduce(),
dataset_repeat(),
dataset_shuffle(),
dataset_shuffle_and_repeat(),
dataset_skip(),
dataset_take(),
dataset_take_while(),
dataset_window()
Examples
## Not run:
dataset <- tensor_slices_dataset(c(1,2,3,4,5)) %>%
dataset_interleave(cycle_length = 2, block_length = 4, function(x) {
tensors_dataset(x) %>%
dataset_repeat(6)
})
# resulting dataset (newlines indicate "block" boundaries):
c(1, 1, 1, 1,
2, 2, 2, 2,
1, 1,
2, 2,
3, 3, 3, 3,
4, 4, 4, 4,
3, 3,
4, 4,
5, 5, 5, 5,
5, 5,
)
## End(Not run)