loss_triplet_hard {tfaddons} | R Documentation |
Triplet hard loss
Description
Computes the triplet loss with hard negative and hard positive mining.
Usage
loss_triplet_hard(margin = 1, soft = FALSE, name = NULL, ...)
Arguments
margin |
Float, margin term in the loss definition. Default value is 1.0. |
soft |
Boolean, if set, use the soft margin version. Default value is False. |
name |
Optional name for the op. |
... |
additional arguments to pass |
Value
triplet_loss: float scalar with dtype of y_pred.
Examples
## Not run:
model = keras_model_sequential() %>%
layer_conv_2d(filters = 64, kernel_size = 2, padding='same', input_shape=c(28,28,1)) %>%
layer_max_pooling_2d(pool_size=2) %>%
layer_flatten() %>%
layer_dense(256, activation= NULL) %>%
layer_lambda(f = function(x) tf$math$l2_normalize(x, axis = 1L))
model %>% compile(
optimizer = optimizer_lazy_adam(),
# apply triplet semihard loss
loss = loss_triplet_hard())
## End(Not run)
[Package tfaddons version 0.10.0 Index]