predict_best_lambda {tfCox} | R Documentation |
Predict from the optimal lambda from tfCox_choose_lambda
Description
Estimate the corresponding theta values from the optimal tuning parameter obtained by tfCox_choose_lambda
.
Usage
predict_best_lambda(cv, newX)
Arguments
cv |
An object from tfCox_choose_lambda. |
newX |
The new covariate values. |
Value
Estimated theta values.
Author(s)
Jiacheng Wu
References
Jiacheng Wu & Daniela Witten (2019) Flexible and Interpretable Models for Survival Data, Journal of Computational and Graphical Statistics, DOI: 10.1080/10618600.2019.1592758
See Also
tfCox_choose_lambda
, negloglik
Examples
#generate training and testing data
dat = sim_dat(n=100, zerof=0, scenario=1)
test_dat = sim_dat(n=100, zerof=0, scenario=1)
#choose the optimal tuning parameter
cv = tfCox_choose_lambda(dat, test_dat, ord=0, alpha=1)
plot(cv$lam_seq, cv$loss)
#optimal tuning parameter
cv$best_lambda
#Estimate the theta values of testing covariates from the optimal tuning parameter
#from tfCox_choose_lambda object.
theta_hat = predict_best_lambda(cv, test_dat$X)
[Package tfCox version 0.1.0 Index]