tf_rgp {tf} | R Documentation |
Gaussian Process random generator
Description
Generates n
realizations of a zero-mean Gaussian process. The function also
accepts user-defined covariance functions (without "nugget" effect, see
cov
), The implemented defaults with scale
parameter \phi
, order
o
and nugget
effect variance \sigma^2
are:
-
squared exponential covariance
Cov(x(t), x(t')) = \exp(-(t-t')^2)/\phi) + \sigma^2 \delta_{t}(t')
. -
Wiener process covariance
Cov(x(t), x(t')) = \min(t',t)/\phi + \sigma^2 \delta_{t}(t')
, -
Matèrn process covariance
Cov(x(t), x(t')) = \tfrac{2^{1-o}}{\Gamma(o)} (\tfrac{\sqrt{2o}|t-t'|}{\phi})^o \text{Bessel}_o(\tfrac{\sqrt{2o}|t-t'|}{s}) + \sigma^2 \delta_{t}(t')
Usage
tf_rgp(
n,
arg = 51L,
cov = c("squareexp", "wiener", "matern"),
scale = diff(range(arg))/10,
nugget = scale/200,
order = 1.5
)
Arguments
n |
how many realizations to draw |
arg |
vector of evaluation points ( |
cov |
type of covariance function to use. Implemented defaults are
|
scale |
scale parameter (see Description). Defaults to the width of the domain divided by 10. |
nugget |
nugget effect for additional white noise / unstructured
variability. Defaults to |
order |
order of the Matèrn covariance (if used, must be >0), defaults
to 1.5. The higher, the smoother the process. Evaluation of the covariance
function becomes numerically unstable for large (>20) |
Value
an tfd
-vector of length n
See Also
Other tidyfun RNG functions:
tf_jiggle()