step_tokenmerge {textrecipes} | R Documentation |
Combine Multiple Token Variables Into One
Description
step_tokenmerge()
creates a specification of a recipe step that will take
multiple token
variables and combine them into one
token
variable.
Usage
step_tokenmerge(
recipe,
...,
role = "predictor",
trained = FALSE,
columns = NULL,
prefix = "tokenmerge",
keep_original_cols = FALSE,
skip = FALSE,
id = rand_id("tokenmerge")
)
Arguments
recipe |
A recipe object. The step will be added to the sequence of operations for this recipe. |
... |
One or more selector functions to choose which
variables are affected by the step. See |
role |
For model terms created by this step, what analysis role should they be assigned?. By default, the function assumes that the new columns created by the original variables will be used as predictors in a model. |
trained |
A logical to indicate if the quantities for preprocessing have been estimated. |
columns |
A character string of variable names that will
be populated (eventually) by the |
prefix |
A prefix for generated column names, default to "tokenmerge". |
keep_original_cols |
A logical to keep the original variables in the
output. Defaults to |
skip |
A logical. Should the step be skipped when the
recipe is baked by |
id |
A character string that is unique to this step to identify it. |
Value
An updated version of recipe
with the new step added
to the sequence of existing steps (if any).
Tidying
When you tidy()
this step, a tibble with columns terms
(the selectors or variables selected).
Case weights
The underlying operation does not allow for case weights.
See Also
step_tokenize()
to turn characters into tokens
Other Steps for Token Modification:
step_lemma()
,
step_ngram()
,
step_pos_filter()
,
step_stem()
,
step_stopwords()
,
step_tokenfilter()
Examples
library(recipes)
library(modeldata)
data(tate_text)
tate_rec <- recipe(~., data = tate_text) %>%
step_tokenize(medium, artist) %>%
step_tokenmerge(medium, artist)
tate_obj <- tate_rec %>%
prep()
bake(tate_obj, new_data = NULL)
tidy(tate_rec, number = 2)
tidy(tate_obj, number = 2)