relate {terra} | R Documentation |
Spatial relationships between geometries
Description
relate
returns a logical matrix indicating the presence or absence of a specific spatial relationships between the geometries in x
and y
.
is.related
returns a logical vector indicating the presence or absence of a specific spatial relationships between x
and any of the geometries in y
Usage
## S4 method for signature 'SpatVector,SpatVector'
relate(x, y, relation, pairs=FALSE, na.rm=TRUE)
## S4 method for signature 'SpatVector,missing'
relate(x, y, relation, pairs=FALSE, na.rm=TRUE)
## S4 method for signature 'SpatVector,SpatVector'
is.related(x, y, relation)
Arguments
x |
SpatVector or SpatExtent |
y |
missing or as for |
relation |
character. One of "intersects", "touches", "crosses", "overlaps", "within", "contains", "covers", "coveredby", "disjoint". Or a "DE-9IM" string such as "FF*FF****". See wikipedia or geotools doc |
pairs |
logical. If |
na.rm |
logical. If |
Value
matrix (relate) or vector (is.related)
See Also
adjacent
, nearby
, intersect
, crop
Examples
# polygons
p1 <- vect("POLYGON ((0 0, 8 0, 8 9, 0 9, 0 0))")
p2 <- vect("POLYGON ((5 6, 15 6, 15 15, 5 15, 5 6))")
p3 <- vect("POLYGON ((8 2, 9 2, 9 3, 8 3, 8 2))")
p4 <- vect("POLYGON ((2 6, 3 6, 3 8, 2 8, 2 6))")
p5 <- vect("POLYGON ((2 12, 3 12, 3 13, 2 13, 2 12))")
p6 <- vect("POLYGON ((10 4, 12 4, 12 7, 11 7, 11 6, 10 6, 10 4))")
p <- rbind(p1, p2, p3, p4, p5, p6)
plot(p, col=rainbow(6, alpha=.5))
lines(p, lwd=2)
text(p)
## relate SpatVectors
relate(p1, p2, "intersects")
relate(p1, p3, "touches")
relate(p1, p5, "disjoint")
relate(rbind(p1, p2), p4, "disjoint")
## relate geometries within SpatVectors
# which are completely separated?
relate(p, relation="disjoint")
# which touch (not overlap or within)?
relate(p, relation="touches")
# which overlap (not merely touch, and not within)?
relate(p, relation="overlaps")
# which are within (not merely overlap)?
relate(p, relation="within")
# do they touch or overlap or are within?
relate(p, relation="intersects")
all(relate(p, relation="intersects") ==
(relate(p, relation="overlaps") |
relate(p, relation="touches") |
relate(p, relation="within")))
#for polygons, "coveredby" is "within"
relate(p, relation="coveredby")
# polygons, lines, and points
pp <- rbind(p1, p2)
L1 <- vect("LINESTRING(1 11, 4 6, 10 6)")
L2 <- vect("LINESTRING(8 14, 12 10)")
L3 <- vect("LINESTRING(1 8, 12 14)")
lns <- rbind(L1, L2, L3)
pts <- vect(cbind(c(7,10,10), c(3,5,6)))
plot(pp, col=rainbow(2, alpha=.5))
text(pp, paste0("POL", 1:2), halo=TRUE)
lines(pp, lwd=2)
lines(lns, col=rainbow(3), lwd=4)
text(lns, paste0("L", 1:3), halo=TRUE)
points(pts, cex=1.5)
text(pts, paste0("PT", 1:3), halo=TRUE, pos=4)
relate(lns, relation="crosses")
relate(lns, pp, relation="crosses")
relate(lns, pp, relation="touches")
relate(lns, pp, relation="intersects")
relate(lns, pp, relation="within")
# polygons can contain lines or points, not the other way around
relate(lns, pp, relation="contains")
relate(pp, lns, relation="contains")
# points and lines can be covered by polygons
relate(lns, pp, relation="coveredby")
relate(pts, pp, "within")
relate(pts, pp, "touches")
relate(pts, lns, "touches")