| tidy_coxreg {tern} | R Documentation | 
Custom tidy methods for Cox regression
Description
Usage
## S3 method for class 'summary.coxph'
tidy(x, ...)
## S3 method for class 'coxreg.univar'
tidy(x, ...)
## S3 method for class 'coxreg.multivar'
tidy(x, ...)
Arguments
x | 
 (  | 
... | 
 additional arguments for the lower level functions.  | 
Value
broom::tidy() returns:
For
summary.coxphobjects, adata.framewith columns:Pr(>|z|),exp(coef),exp(-coef),lower .95,upper .95,level, andn.For
coxreg.univarobjects, adata.framewith columns:effect,term,term_label,level,n,hr,lcl,ucl,pval, andci.For
coxreg.multivarobjects, adata.framewith columns:term,pval,term_label,hr,lcl,ucl,level, andci.
Functions
-  
tidy(summary.coxph): Custom tidy method forsurvival::coxph()summary results.Tidy the
survival::coxph()results into adata.frameto extract model results. -  
tidy(coxreg.univar): Custom tidy method for a univariate Cox regression.Tidy up the result of a Cox regression model fitted by
fit_coxreg_univar(). -  
tidy(coxreg.multivar): Custom tidy method for a multivariate Cox regression.Tidy up the result of a Cox regression model fitted by
fit_coxreg_multivar(). 
See Also
Examples
library(survival)
library(broom)
set.seed(1, kind = "Mersenne-Twister")
dta_bladder <- with(
  data = bladder[bladder$enum < 5, ],
  data.frame(
    time = stop,
    status = event,
    armcd = as.factor(rx),
    covar1 = as.factor(enum),
    covar2 = factor(
      sample(as.factor(enum)),
      levels = 1:4, labels = c("F", "F", "M", "M")
    )
  )
)
labels <- c("armcd" = "ARM", "covar1" = "A Covariate Label", "covar2" = "Sex (F/M)")
formatters::var_labels(dta_bladder)[names(labels)] <- labels
dta_bladder$age <- sample(20:60, size = nrow(dta_bladder), replace = TRUE)
formula <- "survival::Surv(time, status) ~ armcd + covar1"
msum <- summary(coxph(stats::as.formula(formula), data = dta_bladder))
tidy(msum)
## Cox regression: arm + 1 covariate.
mod1 <- fit_coxreg_univar(
  variables = list(
    time = "time", event = "status", arm = "armcd",
    covariates = "covar1"
  ),
  data = dta_bladder,
  control = control_coxreg(conf_level = 0.91)
)
## Cox regression: arm + 1 covariate + interaction, 2 candidate covariates.
mod2 <- fit_coxreg_univar(
  variables = list(
    time = "time", event = "status", arm = "armcd",
    covariates = c("covar1", "covar2")
  ),
  data = dta_bladder,
  control = control_coxreg(conf_level = 0.91, interaction = TRUE)
)
tidy(mod1)
tidy(mod2)
multivar_model <- fit_coxreg_multivar(
  variables = list(
    time = "time", event = "status", arm = "armcd",
    covariates = c("covar1", "covar2")
  ),
  data = dta_bladder
)
broom::tidy(multivar_model)