| prop_diff {tern} | R Documentation | 
Proportion difference
Description
Usage
estimate_proportion_diff(
  lyt,
  vars,
  variables = list(strata = NULL),
  conf_level = 0.95,
  method = c("waldcc", "wald", "cmh", "ha", "newcombe", "newcombecc", "strat_newcombe",
    "strat_newcombecc"),
  weights_method = "cmh",
  na_str = default_na_str(),
  nested = TRUE,
  ...,
  var_labels = vars,
  show_labels = "hidden",
  table_names = vars,
  .stats = NULL,
  .formats = NULL,
  .labels = NULL,
  .indent_mods = NULL
)
s_proportion_diff(
  df,
  .var,
  .ref_group,
  .in_ref_col,
  variables = list(strata = NULL),
  conf_level = 0.95,
  method = c("waldcc", "wald", "cmh", "ha", "newcombe", "newcombecc", "strat_newcombe",
    "strat_newcombecc"),
  weights_method = "cmh"
)
a_proportion_diff(
  df,
  .var,
  .ref_group,
  .in_ref_col,
  variables = list(strata = NULL),
  conf_level = 0.95,
  method = c("waldcc", "wald", "cmh", "ha", "newcombe", "newcombecc", "strat_newcombe",
    "strat_newcombecc"),
  weights_method = "cmh"
)
Arguments
lyt | 
 (  | 
vars | 
 (  | 
variables | 
 (named   | 
conf_level | 
 (  | 
method | 
 (  | 
weights_method | 
 (  | 
na_str | 
 (  | 
nested | 
 (  | 
... | 
 additional arguments for the lower level functions.  | 
var_labels | 
 (  | 
show_labels | 
 (  | 
table_names | 
 (  | 
.stats | 
 (  | 
.formats | 
 (named   | 
.labels | 
 (named   | 
.indent_mods | 
 (named   | 
df | 
 (  | 
.var | 
 (  | 
.ref_group | 
 (  | 
.in_ref_col | 
 (  | 
Value
-  
estimate_proportion_diff()returns a layout object suitable for passing to further layouting functions, or tortables::build_table(). Adding this function to anrtablelayout will add formatted rows containing the statistics froms_proportion_diff()to the table layout. 
-  
s_proportion_diff()returns a named list of elementsdiffanddiff_ci. 
-  
a_proportion_diff()returns the corresponding list with formattedrtables::CellValue(). 
Functions
-  
estimate_proportion_diff(): Layout-creating function which can take statistics function arguments and additional format arguments. This function is a wrapper forrtables::analyze(). -  
s_proportion_diff(): Statistics function estimating the difference in terms of responder proportion. -  
a_proportion_diff(): Formatted analysis function which is used asafuninestimate_proportion_diff(). 
Note
When performing an unstratified analysis, methods "cmh", "strat_newcombe", and "strat_newcombecc" are
not permitted.
See Also
Examples
## "Mid" case: 4/4 respond in group A, 1/2 respond in group B.
nex <- 100 # Number of example rows
dta <- data.frame(
  "rsp" = sample(c(TRUE, FALSE), nex, TRUE),
  "grp" = sample(c("A", "B"), nex, TRUE),
  "f1" = sample(c("a1", "a2"), nex, TRUE),
  "f2" = sample(c("x", "y", "z"), nex, TRUE),
  stringsAsFactors = TRUE
)
l <- basic_table() %>%
  split_cols_by(var = "grp", ref_group = "B") %>%
  estimate_proportion_diff(
    vars = "rsp",
    conf_level = 0.90,
    method = "ha"
  )
build_table(l, df = dta)
s_proportion_diff(
  df = subset(dta, grp == "A"),
  .var = "rsp",
  .ref_group = subset(dta, grp == "B"),
  .in_ref_col = FALSE,
  conf_level = 0.90,
  method = "ha"
)
# CMH example with strata
s_proportion_diff(
  df = subset(dta, grp == "A"),
  .var = "rsp",
  .ref_group = subset(dta, grp == "B"),
  .in_ref_col = FALSE,
  variables = list(strata = c("f1", "f2")),
  conf_level = 0.90,
  method = "cmh"
)
a_proportion_diff(
  df = subset(dta, grp == "A"),
  .var = "rsp",
  .ref_group = subset(dta, grp == "B"),
  .in_ref_col = FALSE,
  conf_level = 0.90,
  method = "ha"
)