h_survival_biomarkers_subgroups {tern}R Documentation

Helper functions for tabulating biomarker effects on survival by subgroup

Description

[Stable]

Helper functions which are documented here separately to not confuse the user when reading about the user-facing functions.

Usage

h_surv_to_coxreg_variables(variables, biomarker)

h_coxreg_mult_cont_df(variables, data, control = control_coxreg())

h_tab_surv_one_biomarker(
  df,
  vars,
  time_unit,
  na_str = default_na_str(),
  .indent_mods = 0L,
  ...
)

Arguments

variables

(named list of string)
list of additional analysis variables.

biomarker

(string)
the name of the biomarker variable.

data

(data.frame)
the dataset containing the variables to summarize.

control

(list)
a list of parameters as returned by the helper function control_coxreg().

df

(data.frame)
results for a single biomarker, as part of what is returned by extract_survival_biomarkers() (it needs a couple of columns which are added by that high-level function relative to what is returned by h_coxreg_mult_cont_df(), see the example).

vars

(character)
the names of statistics to be reported among:

  • n_tot_events: Total number of events per group.

  • n_tot: Total number of observations per group.

  • median: Median survival time.

  • hr: Hazard ratio.

  • ci: Confidence interval of hazard ratio.

  • pval: p-value of the effect. Note, one of the statistics n_tot and n_tot_events, as well as both hr and ci are required.

time_unit

(string)
label with unit of median survival time. Default NULL skips displaying unit.

na_str

(string)
string used to replace all NA or empty values in the output.

.indent_mods

(named integer)
indent modifiers for the labels. Defaults to 0, which corresponds to the unmodified default behavior. Can be negative.

...

additional arguments for the lower level functions.

Value

Functions

Examples

library(dplyr)
library(forcats)

adtte <- tern_ex_adtte

# Save variable labels before data processing steps.
adtte_labels <- formatters::var_labels(adtte, fill = FALSE)

adtte_f <- adtte %>%
  filter(PARAMCD == "OS") %>%
  mutate(
    AVALU = as.character(AVALU),
    is_event = CNSR == 0
  )
labels <- c("AVALU" = adtte_labels[["AVALU"]], "is_event" = "Event Flag")
formatters::var_labels(adtte_f)[names(labels)] <- labels

# This is how the variable list is converted internally.
h_surv_to_coxreg_variables(
  variables = list(
    tte = "AVAL",
    is_event = "EVNT",
    covariates = c("A", "B"),
    strata = "D"
  ),
  biomarker = "AGE"
)

# For a single population, estimate separately the effects
# of two biomarkers.
df <- h_coxreg_mult_cont_df(
  variables = list(
    tte = "AVAL",
    is_event = "is_event",
    biomarkers = c("BMRKR1", "AGE"),
    covariates = "SEX",
    strata = c("STRATA1", "STRATA2")
  ),
  data = adtte_f
)
df

# If the data set is empty, still the corresponding rows with missings are returned.
h_coxreg_mult_cont_df(
  variables = list(
    tte = "AVAL",
    is_event = "is_event",
    biomarkers = c("BMRKR1", "AGE"),
    covariates = "REGION1",
    strata = c("STRATA1", "STRATA2")
  ),
  data = adtte_f[NULL, ]
)

# Starting from above `df`, zoom in on one biomarker and add required columns.
df1 <- df[1, ]
df1$subgroup <- "All patients"
df1$row_type <- "content"
df1$var <- "ALL"
df1$var_label <- "All patients"
h_tab_surv_one_biomarker(
  df1,
  vars = c("n_tot", "n_tot_events", "median", "hr", "ci", "pval"),
  time_unit = "days"
)


[Package tern version 0.9.5 Index]