| compare_variables {tern} | R Documentation |
Compare variables between groups
Description
Comparison with a reference group for different x objects.
Usage
compare_vars(
lyt,
vars,
var_labels = vars,
na_str = default_na_str(),
nested = TRUE,
...,
na.rm = TRUE,
show_labels = "default",
table_names = vars,
section_div = NA_character_,
.stats = c("n", "mean_sd", "count_fraction", "pval"),
.formats = NULL,
.labels = NULL,
.indent_mods = NULL
)
s_compare(x, .ref_group, .in_ref_col, ...)
## S3 method for class 'numeric'
s_compare(x, .ref_group, .in_ref_col, ...)
## S3 method for class 'factor'
s_compare(x, .ref_group, .in_ref_col, denom = "n", na.rm = TRUE, ...)
## S3 method for class 'character'
s_compare(
x,
.ref_group,
.in_ref_col,
denom = "n",
na.rm = TRUE,
.var,
verbose = TRUE,
...
)
## S3 method for class 'logical'
s_compare(x, .ref_group, .in_ref_col, na.rm = TRUE, denom = "n", ...)
Arguments
lyt |
( |
vars |
( |
var_labels |
( |
na_str |
( |
nested |
( |
... |
arguments passed to |
na.rm |
( |
show_labels |
( |
table_names |
( |
section_div |
( |
.stats |
( |
.formats |
(named |
.labels |
(named |
.indent_mods |
(named |
x |
( |
.ref_group |
( |
.in_ref_col |
( |
denom |
( |
.var |
( |
verbose |
( |
Value
-
compare_vars()returns a layout object suitable for passing to further layouting functions, or tortables::build_table(). Adding this function to anrtablelayout will add formatted rows containing the statistics froms_compare()to the table layout.
-
s_compare()returns output ofs_summary()and comparisons versus the reference group in the form of p-values.
Functions
-
compare_vars(): Layout-creating function which can take statistics function arguments and additional format arguments. This function is a wrapper forrtables::analyze(). -
s_compare(): S3 generic function to produce a comparison summary. -
s_compare(numeric): Method fornumericclass. This uses the standard t-test to calculate the p-value. -
s_compare(factor): Method forfactorclass. This uses the chi-squared test to calculate the p-value. -
s_compare(character): Method forcharacterclass. This makes an automatic conversion tofactor(with a warning) and then forwards to the method for factors. -
s_compare(logical): Method forlogicalclass. A chi-squared test is used. If missing values are not removed, then they are counted asFALSE.
Note
For factor variables,
denomfor factor proportions can only bensince the purpose is to compare proportions between columns, therefore a row-based proportion would not make sense. Proportion based onN_colwould be difficult since we use counts for the chi-squared test statistic, therefore missing values should be accounted for as explicit factor levels.If factor variables contain
NA, theseNAvalues are excluded by default. To includeNAvalues setna.rm = FALSEand missing values will be displayed as anNAlevel. Alternatively, an explicit factor level can be defined forNAvalues during pre-processing viadf_explicit_na()- the defaultna_level("<Missing>") will also be excluded whenna.rmis set toTRUE.For character variables, automatic conversion to factor does not guarantee that the table will be generated correctly. In particular for sparse tables this very likely can fail. Therefore it is always better to manually convert character variables to factors during pre-processing.
For
compare_vars(), the column split must define a reference group viaref_groupso that the comparison is well defined.
See Also
s_summary() which is used internally to compute a summary within s_compare(), and a_summary()
which is used (with compare = TRUE) as the analysis function for compare_vars().
Examples
# `compare_vars()` in `rtables` pipelines
## Default output within a `rtables` pipeline.
lyt <- basic_table() %>%
split_cols_by("ARMCD", ref_group = "ARM B") %>%
compare_vars(c("AGE", "SEX"))
build_table(lyt, tern_ex_adsl)
## Select and format statistics output.
lyt <- basic_table() %>%
split_cols_by("ARMCD", ref_group = "ARM C") %>%
compare_vars(
vars = "AGE",
.stats = c("mean_sd", "pval"),
.formats = c(mean_sd = "xx.x, xx.x"),
.labels = c(mean_sd = "Mean, SD")
)
build_table(lyt, df = tern_ex_adsl)
# `s_compare.numeric`
## Usual case where both this and the reference group vector have more than 1 value.
s_compare(rnorm(10, 5, 1), .ref_group = rnorm(5, -5, 1), .in_ref_col = FALSE)
## If one group has not more than 1 value, then p-value is not calculated.
s_compare(rnorm(10, 5, 1), .ref_group = 1, .in_ref_col = FALSE)
## Empty numeric does not fail, it returns NA-filled items and no p-value.
s_compare(numeric(), .ref_group = numeric(), .in_ref_col = FALSE)
# `s_compare.factor`
## Basic usage:
x <- factor(c("a", "a", "b", "c", "a"))
y <- factor(c("a", "b", "c"))
s_compare(x = x, .ref_group = y, .in_ref_col = FALSE)
## Management of NA values.
x <- explicit_na(factor(c("a", "a", "b", "c", "a", NA, NA)))
y <- explicit_na(factor(c("a", "b", "c", NA)))
s_compare(x = x, .ref_group = y, .in_ref_col = FALSE, na.rm = TRUE)
s_compare(x = x, .ref_group = y, .in_ref_col = FALSE, na.rm = FALSE)
# `s_compare.character`
## Basic usage:
x <- c("a", "a", "b", "c", "a")
y <- c("a", "b", "c")
s_compare(x, .ref_group = y, .in_ref_col = FALSE, .var = "x", verbose = FALSE)
## Note that missing values handling can make a large difference:
x <- c("a", "a", "b", "c", "a", NA)
y <- c("a", "b", "c", rep(NA, 20))
s_compare(x,
.ref_group = y, .in_ref_col = FALSE,
.var = "x", verbose = FALSE
)
s_compare(x,
.ref_group = y, .in_ref_col = FALSE, .var = "x",
na.rm = FALSE, verbose = FALSE
)
# `s_compare.logical`
## Basic usage:
x <- c(TRUE, FALSE, TRUE, TRUE)
y <- c(FALSE, FALSE, TRUE)
s_compare(x, .ref_group = y, .in_ref_col = FALSE)
## Management of NA values.
x <- c(NA, TRUE, FALSE)
y <- c(NA, NA, NA, NA, FALSE)
s_compare(x, .ref_group = y, .in_ref_col = FALSE, na.rm = TRUE)
s_compare(x, .ref_group = y, .in_ref_col = FALSE, na.rm = FALSE)