multi_stein_loss_cov {tensr} | R Documentation |
Calculate multiway Stein's loss from component covariance matrices.
Description
Given a list of estimated component covariance matrices, a list of true
component covariance matrices, an estimate of the total variation, and the
true total variation, multi_stein_loss_cov
will calculate multiway
Stein's loss between the estimates and the truth.
Usage
multi_stein_loss_cov(B, Sigma, b, sigma)
Arguments
B |
A list of positive definite matrices. These are the 'estimates' of the component covariance matrices. |
Sigma |
A list of positive definite matrices. These are the 'true' component covariance matrices. |
b |
A numeric. This is an 'estimate' of the total variation parameter, the 'standard devation' version of it. |
sigma |
A numeric. This is the 'true' total variation parameter, the 'standard devation' version of it. |
Details
Multiway Stein's loss is a generalization of Stein's loss. More details on multiway Stein's loss and the Bayes rules under it can be found in Gerard and Hoff (2015).
The function multi_stien_loss
also calculates multiway Stein's loss,
but uses the lower-triangular Cholesky square roots of the component
covariance matrices as input.
Value
A numeric, the multiway Stein's loss between the 'truth' and the 'estimates'.
Author(s)
David Gerard.
References
Gerard, D., & Hoff, P. (2015). Equivariant minimax dominators of the MLE in the array normal model. Journal of Multivariate Analysis, 137, 32-49. https://doi.org/10.1016/j.jmva.2015.01.020 http://arxiv.org/pdf/1408.0424.pdf
See Also
multi_stein_loss
, get_equi_bayes
.