matAR.RR.se {tensorTS} | R Documentation |
Asymptotic Covariance Matrix of One-Term Reduced rank MAR(1) Model
Description
Asymptotic covariance matrix of the reduced rank MAR(1) model. If Sigma1
and Sigma2
is provided in input,
we assume a separable covariance matrix, Cov(vec()) =
.
Usage
matAR.RR.se(A1,A2,k1,k2,method,Sigma.e=NULL,Sigma1=NULL,Sigma2=NULL,RU1=diag(k1),
RV1=diag(k1),RU2=diag(k2),RV2=diag(k2),mpower=100)
Arguments
A1 |
left coefficient matrix. |
A2 |
right coefficient matrix. |
k1 |
rank of |
k2 |
rank of |
method |
character string, specifying the method of the estimation to be used.
|
Sigma.e |
only if |
Sigma1 , Sigma2 |
only if |
RU1 , RV1 , RU2 , RV2 |
orthogonal rotations of |
mpower |
truncate the VMA( |
Value
a list containing the following:
Sigma
asymptotic covariance matrix of (vec(
),vec(
)).
Theta1.u
asymptotic covariance matrix of vec(
).
Theta1.v
asymptotic covariance matrix of vec(
).
Theta2.u
asymptotic covariance matrix of vec(
).
Theta2.v
asymptotic covariance matrix of vec(
).
References
Han Xiao, Yuefeng Han, Rong Chen and Chengcheng Liu, Reduced Rank Autoregressive Models for Matrix Time Series.