matAR.RR.se {tensorTS} | R Documentation |
Asymptotic Covariance Matrix of One-Term Reduced rank MAR(1) Model
Description
Asymptotic covariance matrix of the reduced rank MAR(1) model. If Sigma1
and Sigma2
is provided in input,
we assume a separable covariance matrix, Cov(vec(E_t
)) = \Sigma_2 \otimes \Sigma_1
.
Usage
matAR.RR.se(A1,A2,k1,k2,method,Sigma.e=NULL,Sigma1=NULL,Sigma2=NULL,RU1=diag(k1),
RV1=diag(k1),RU2=diag(k2),RV2=diag(k2),mpower=100)
Arguments
A1 |
left coefficient matrix. |
A2 |
right coefficient matrix. |
k1 |
rank of |
k2 |
rank of |
method |
character string, specifying the method of the estimation to be used.
|
Sigma.e |
only if |
Sigma1 , Sigma2 |
only if |
RU1 , RV1 , RU2 , RV2 |
orthogonal rotations of |
mpower |
truncate the VMA( |
Value
a list containing the following:
Sigma
asymptotic covariance matrix of (vec(
\hat A_1
),vec(\hat A_2^T
)).Theta1.u
asymptotic covariance matrix of vec(
\hat U_1
).Theta1.v
asymptotic covariance matrix of vec(
\hat V_1
).Theta2.u
asymptotic covariance matrix of vec(
\hat U_2
).Theta2.v
asymptotic covariance matrix of vec(
\hat V_2
).
References
Han Xiao, Yuefeng Han, Rong Chen and Chengcheng Liu, Reduced Rank Autoregressive Models for Matrix Time Series.