matAR.RR.est {tensorTS} | R Documentation |
Estimation for Reduced Rank MAR(1) Model
Description
Estimation of the reduced rank MAR(1) model, using least squares (RRLSE) or MLE (RRMLE), as determined by the value of method
.
Usage
matAR.RR.est(xx, method, A1.init=NULL, A2.init=NULL,Sig1.init=NULL,Sig2.init=NULL,
k1=NULL, k2=NULL, niter=200,tol=1e-4)
Arguments
xx |
|
method |
character string, specifying the method of the estimation to be used.
|
A1.init |
initial value of |
A2.init |
initial value of |
Sig1.init |
only if |
Sig2.init |
only if |
k1 |
rank of |
k2 |
rank of |
niter |
maximum number of iterations if error stays above |
tol |
relative Frobenius norm error tolerance. |
Details
The reduced rank MAR(1) model takes the form:
X_t = A_1 X_{t-1} A_2^{^\top} + E_t,
where A_i
are d_i \times d_i
coefficient matrices of ranks \mathrm{rank}(A_i) = k_i \le d_i
, i=1,2
. For the MLE method we also assume
\mathrm{Cov}(\mathrm{vec}(E_t))=\Sigma_2 \otimes \Sigma_1
Value
return a list containing the following:
A1
estimator of
A_1
, ad_1
byd_1
matrix.A2
estimator of
A_2
, ad_2
byd_2
matrix.loading
a list of estimated
U_i
,V_i
, where we writeA_i=U_iD_iV_i
as the singular value decomposition (SVD) ofA_i
,i = 1,2
.Sig1
only if
method=MLE
, when\mathrm{Cov}(\mathrm{vec}(E_t))=\Sigma_2 \otimes \Sigma_1
.Sig2
only if
method=MLE
, when\mathrm{Cov}(\mathrm{vec}(E_t))=\Sigma_2 \otimes \Sigma_1
.res
residuals.
Sig
sample covariance matrix of the residuals vec(
\hat E_t
).cov
a list containing
Sigma
asymptotic covariance matrix of (vec(
\hat A_1
),vec(\hat A_2^{\top}
)).Theta1.u
,Theta1.v
asymptotic covariance matrix of vec(
\hat U_1
), vec(\hat V_1
).Theta2.u
,Theta2.v
asymptotic covariance matrix of vec(
\hat U_2
), vec(\hat V_2
).
sd.A1
element-wise standard errors of
\hat A_1
, aligned withA1
.sd.A2
element-wise standard errors of
\hat A_2
, aligned withA2
.niter
number of iterations.
BIC
value of the extended Bayesian information criterion.
References
Reduced Rank Autoregressive Models for Matrix Time Series, by Han Xiao, Yuefeng Han, Rong Chen and Chengcheng Liu.
Examples
set.seed(333)
dim <- c(3,3)
xx <- tenAR.sim(t=500, dim, R=2, P=1, rho=0.5, cov='iid')
est <- matAR.RR.est(xx, method="RRLSE", k1=1, k2=1)