| matAR.RR.est {tensorTS} | R Documentation |
Estimation for Reduced Rank MAR(1) Model
Description
Estimation of the reduced rank MAR(1) model, using least squares (RRLSE) or MLE (RRMLE), as determined by the value of method.
Usage
matAR.RR.est(xx, method, A1.init=NULL, A2.init=NULL,Sig1.init=NULL,Sig2.init=NULL,
k1=NULL, k2=NULL, niter=200,tol=1e-4)
Arguments
xx |
|
method |
character string, specifying the method of the estimation to be used.
|
A1.init |
initial value of |
A2.init |
initial value of |
Sig1.init |
only if |
Sig2.init |
only if |
k1 |
rank of |
k2 |
rank of |
niter |
maximum number of iterations if error stays above |
tol |
relative Frobenius norm error tolerance. |
Details
The reduced rank MAR(1) model takes the form:
X_t = A_1 X_{t-1} A_2^{^\top} + E_t,
where A_i are d_i \times d_i coefficient matrices of ranks \mathrm{rank}(A_i) = k_i \le d_i, i=1,2. For the MLE method we also assume
\mathrm{Cov}(\mathrm{vec}(E_t))=\Sigma_2 \otimes \Sigma_1
Value
return a list containing the following:
A1estimator of
A_1, ad_1byd_1matrix.A2estimator of
A_2, ad_2byd_2matrix.loadinga list of estimated
U_i,V_i, where we writeA_i=U_iD_iV_ias the singular value decomposition (SVD) ofA_i,i = 1,2.Sig1only if
method=MLE, when\mathrm{Cov}(\mathrm{vec}(E_t))=\Sigma_2 \otimes \Sigma_1.Sig2only if
method=MLE, when\mathrm{Cov}(\mathrm{vec}(E_t))=\Sigma_2 \otimes \Sigma_1.resresiduals.
Sigsample covariance matrix of the residuals vec(
\hat E_t).cova list containing
Sigmaasymptotic covariance matrix of (vec(
\hat A_1),vec(\hat A_2^{\top})).Theta1.u,Theta1.vasymptotic covariance matrix of vec(
\hat U_1), vec(\hat V_1).Theta2.u,Theta2.vasymptotic covariance matrix of vec(
\hat U_2), vec(\hat V_2).
sd.A1element-wise standard errors of
\hat A_1, aligned withA1.sd.A2element-wise standard errors of
\hat A_2, aligned withA2.niternumber of iterations.
BICvalue of the extended Bayesian information criterion.
References
Reduced Rank Autoregressive Models for Matrix Time Series, by Han Xiao, Yuefeng Han, Rong Chen and Chengcheng Liu.
Examples
set.seed(333)
dim <- c(3,3)
xx <- tenAR.sim(t=500, dim, R=2, P=1, rho=0.5, cov='iid')
est <- matAR.RR.est(xx, method="RRLSE", k1=1, k2=1)