matAR.RR.est {tensorTS} | R Documentation |
Estimation for Reduced Rank MAR(1) Model
Description
Estimation of the reduced rank MAR(1) model, using least squares (RRLSE) or MLE (RRMLE), as determined by the value of method
.
Usage
matAR.RR.est(xx, method, A1.init=NULL, A2.init=NULL,Sig1.init=NULL,Sig2.init=NULL,
k1=NULL, k2=NULL, niter=200,tol=1e-4)
Arguments
xx |
|
method |
character string, specifying the method of the estimation to be used.
|
A1.init |
initial value of |
A2.init |
initial value of |
Sig1.init |
only if |
Sig2.init |
only if |
k1 |
rank of |
k2 |
rank of |
niter |
maximum number of iterations if error stays above |
tol |
relative Frobenius norm error tolerance. |
Details
The reduced rank MAR(1) model takes the form:
where are
coefficient matrices of ranks
,
. For the MLE method we also assume
Value
return a list containing the following:
A1
estimator of
, a
by
matrix.
A2
estimator of
, a
by
matrix.
loading
a list of estimated
,
, where we write
as the singular value decomposition (SVD) of
,
.
Sig1
only if
method=MLE
, when.
Sig2
only if
method=MLE
, when.
res
residuals.
Sig
sample covariance matrix of the residuals vec(
).
cov
a list containing
Sigma
asymptotic covariance matrix of (vec(
),vec(
)).
Theta1.u
,Theta1.v
asymptotic covariance matrix of vec(
), vec(
).
Theta2.u
,Theta2.v
asymptotic covariance matrix of vec(
), vec(
).
sd.A1
element-wise standard errors of
, aligned with
A1
.sd.A2
element-wise standard errors of
, aligned with
A2
.niter
number of iterations.
BIC
value of the extended Bayesian information criterion.
References
Reduced Rank Autoregressive Models for Matrix Time Series, by Han Xiao, Yuefeng Han, Rong Chen and Chengcheng Liu.
Examples
set.seed(333)
dim <- c(3,3)
xx <- tenAR.sim(t=500, dim, R=2, P=1, rho=0.5, cov='iid')
est <- matAR.RR.est(xx, method="RRLSE", k1=1, k2=1)