tPCAladle {tensorBSS} | R Documentation |
Ladle Estimate for tPCA
Description
For r-dimensional tensors, the Ladle estimate for tPCA assumes that for a given mode m
, the last p_m - k_m
modewise eigenvalues are equal. Combining information from the eigenvalues and eigenvectors of the m-mode covariance matrix the ladle estimator yields estimates for k_1,...,k_r
.
Usage
tPCAladle(x, n.boot = 200, ncomp = NULL)
Arguments
x |
array of an order at least two with the last dimension corresponding to the sampling units. |
n.boot |
number of bootstrapping samples to be used. |
ncomp |
vector giving the number of components among which the ladle estimator is to be searched for each mode. The default follows the recommendation of Luo and Li 2016. |
Details
The model here assumes that the eigenvalues of the m-mode covariance matrix are of the form \lambda_{1,m} \geq ... \geq \lambda_{k_m,m} > \lambda_{k_m+1,m} = ... = \lambda_{p_m,m}
and the goal is to estimate the value of k_m
for all modes. The ladle estimate for this purpose combines the values of the
scaled eigenvalues and the variation of the eigenvectors based on bootstrapping. The idea there is that for distinct eigenvales the variation of the eigenvectors
is small and for equal eigenvalues the corresponding eigenvectors have large variation.
This measure is then computed assuming k_m
=0,..., ncomp[m]
and the ladle estimate for k_m
is the value where the measure takes its minimum.
Value
A list of class 'tladle' containing:
U |
list containing the modewise rotation matrices. |
D |
list containing the modewise eigenvalues. |
S |
array of the same size as |
ResMode |
a list with the modewise results which are lists containing:
|
xmu |
the data location |
data.name |
string with the name of the input data |
method |
string |
Author(s)
Klaus Nordhausen
References
Koesner, C, Nordhausen, K. and Virta, J. (2019), Estimating the signal tensor dimension using tensorial PCA. Manuscript.
Luo, W. and Li, B. (2016), Combining Eigenvalues and Variation of Eigenvectors for Order Determination, Biometrika, 103, 875–887. <doi:10.1093/biomet/asw051>
See Also
Examples
library(ICtest)
n <- 200
sig <- 0.6
Z <- rbind(sqrt(0.7)*rt(n,df=5)*sqrt(3/5),
sqrt(0.3)*runif(n,-sqrt(3),sqrt(3)),
sqrt(0.3)*(rchisq(n,df=3)-3)/sqrt(6),
sqrt(0.9)*(rexp(n)-1),
sqrt(0.1)*rlogis(n,0,sqrt(3)/pi),
sqrt(0.5)*(rbeta(n,2,2)-0.5)*sqrt(20)
)
dim(Z) <- c(3, 2, n)
U1 <- rorth(12)[,1:3]
U2 <- rorth(8)[,1:2]
U <- list(U1=U1, U2=U2)
Y <- tensorTransform2(Z,U,1:2)
EPS <- array(rnorm(12*8*n, mean=0, sd=sig), dim=c(12,8,n))
X <- Y + EPS
TEST <- tPCAladle(X)
TEST
ggtladleplot(TEST)