tMD {tensorBSS} | R Documentation |
Minimum Distance Index of a Kronecker Product
Description
A shortcut function for computing the minimum distance index of a tensorial ICA estimate on the Kronecker product “scale” (the vectorized space).
Usage
tMD(W.hat, A)
Arguments
W.hat |
A list of |
A |
A list of |
Details
The function computes the minimum distance index between W.hat[[r]] %x% ... %x% W.hat[[1]]
and A[[r]] %x% ... %x% A[[1]]
. The index is useful for comparing the performance of a tensor-valued ICA method to that of a method using first vectorization and then some vector-valued ICA method.
Value
The value of the MD index of the Kronecker product.
Author(s)
Joni Virta
References
Ilmonen, P., Nordhausen, K., Oja, H. and Ollila, E. (2010), A New Performance Index for ICA: Properties, Computation and Asymptotic Analysis. In Vigneron, V., Zarzoso, V., Moreau, E., Gribonval, R. and Vincent, E. (editors) Latent Variable Analysis and Signal Separation, 229-236, Springer.
Virta, J., Li, B., Nordhausen, K. and Oja, H., (2017), Independent component analysis for tensor-valued data, Journal of Multivariate Analysis, doi: 10.1016/j.jmva.2017.09.008
See Also
Examples
n <- 1000
S <- t(cbind(rexp(n)-1,
rnorm(n),
runif(n, -sqrt(3), sqrt(3)),
rt(n,5)*sqrt(0.6),
(rchisq(n,1)-1)/sqrt(2),
(rchisq(n,2)-2)/sqrt(4)))
dim(S) <- c(3, 2, n)
A1 <- matrix(rnorm(9), 3, 3)
A2 <- matrix(rnorm(4), 2, 2)
X <- tensorTransform(S, A1, 1)
X <- tensorTransform(X, A2, 2)
tfobi <- tFOBI(X)
MD(tfobi$W[[2]] %x% tfobi$W[[1]], A2 %x% A1)
tMD(list(tfobi$W[[2]]), list(A2))