tJADE {tensorBSS}R Documentation

tJADE for Tensor-Valued Observations

Description

Computes the tensorial JADE in an independent component model.

Usage

tJADE(x, maxiter = 100, eps = 1e-06)

Arguments

x

Numeric array of an order at least two. It is assumed that the last dimension corresponds to the sampling units.

maxiter

Maximum number of iterations. Passed on to rjd.

eps

Convergence tolerance. Passed on to rjd.

Details

It is assumed that SS is a tensor (array) of size p1×p2××prp_1 \times p_2 \times \ldots \times p_r with mutually independent elements and measured on NN units. The tensor independent component model further assumes that the tensors S are mixed from each mode mm by the mixing matrix AmA_m, m=1,,rm = 1, \ldots, r, yielding the observed data XX. In R the sample of XX is saved as an array of dimensions p1,p2,,pr,Np_1, p_2, \ldots, p_r, N.

tJADE recovers then based on x the underlying independent components SS by estimating the rr unmixing matrices W1,,WrW_1, \ldots, W_r using fourth joint moments in a more efficient way than tFOBI.

If x is a matrix, that is, r=1r = 1, the method reduces to JADE and the function calls JADE.

For a generalization for tensor-valued time series see tgJADE.

Value

A list with class 'tbss', inheriting from class 'bss', containing the following components:

S

Array of the same size as x containing the independent components.

W

List containing all the unmixing matrices

Xmu

The data location.

datatype

Character string with value "iid". Relevant for plot.tbss.

Author(s)

Joni Virta

References

Virta J., Li B., Nordhausen K., Oja H. (2018): JADE for tensor-valued observations, Journal of Computational and Graphical Statistics, Volume 27, p. 628 - 637, doi: 10.1080/10618600.2017.1407324

See Also

JADE, tgJADE

Examples

n <- 1000
S <- t(cbind(rexp(n)-1,
             rnorm(n),
             runif(n, -sqrt(3), sqrt(3)),
             rt(n,5)*sqrt(0.6),
             (rchisq(n,1)-1)/sqrt(2),
             (rchisq(n,2)-2)/sqrt(4)))
             
dim(S) <- c(3, 2, n)

A1 <- matrix(rnorm(9), 3, 3)
A2 <- matrix(rnorm(4), 2, 2)

X <- tensorTransform(S, A1, 1)
X <- tensorTransform(X, A2, 2)

tjade <- tJADE(X)

MD(tjade$W[[1]], A1)
MD(tjade$W[[2]], A2) 
tMD(tjade$W, list(A1, A2))

## Not run: 
# Digit data example
# Running will take a few minutes

data(zip.train)
x <- zip.train

rows <- which(x[, 1] == 0 | x[, 1] == 1)
x0 <- x[rows, 2:257]
y0 <- x[rows, 1] + 1

x0 <- t(x0)
dim(x0) <- c(16, 16, 2199)

tjade <- tJADE(x0)
plot(tjade, col=y0)

## End(Not run)


[Package tensorBSS version 0.3.8 Index]