plotTensorBF {tensorBF} | R Documentation |
Plot Tensor Components
Description
plotTensorBF
shows the heatmap of components inferred by tensorBF
.
Usage
plotTensorBF(res, Y = NULL, k = 1, modesOnAxis = c(1, 2, 3),
nTopFeatures = c(5, 15, 3), margins = c(4, 4, 4, 12), cex.axis = 1,
cols = colorRampPalette(c("blue", "white", "red"))(101), key = TRUE,
plimit = NULL)
Arguments
res |
The learned tensorBF model. |
Y |
The original input data to be plotted. If specified NULL,
the function plots the data reconstruction using |
k |
the component number to visualize (default: 1). |
modesOnAxis |
which mode to plot on each axis c(Yaxis,Xaxis,lateral). Defaults to c(1,2,3). |
nTopFeatures |
The number of most relevant features to show for the data space
visualizations in each of the modes. Defaults to c(5,15,3) for displaying top 10 features
of |
margins |
numeric vector of length 4 containing the margins (see par(mar= *)) |
cex.axis |
positive numbers, used as cex.axis (default: 1) |
cols |
colors used for the image. Defaults to a blue-white-red color scale. |
key |
logical indicating whether a color-key should be drawn. |
plimit |
(optional) numerical number indicating the maximum absolute value to be plotted in the heatmap. |
Examples
#Data generation
K <- 3
X <- matrix(rnorm(20*K),20,K)
W <- matrix(rnorm(30*K),30,K)
U <- matrix(rnorm(3*K),3,K)
Y = 0
for(k in 1:K) Y <- Y + outer(outer(X[,k],W[,k]),U[,k])
Y <- Y + array(rnorm(20*30*3,0,0.25),dim=c(20,30,3))
#Run the method with default options
## Not run: res1 <- tensorBF(Y)
## Not run: plotTensorBF(res = res1,Y=Y,k=1)